×

Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with vectorial torsion. (Russian. English summary) Zbl 07819531

Summary: The study of (pseudo)Riemannian manifolds with different metric connections different from the Levi-Civita connection has become a subject of current interest lately. A metric connection with vectorial torsion (also known as a semi-symmetric connection) is a frequently considered one of them. The correlation between the conformal deformations of Riemannian manifolds and metric connections with vectorial torsion on them was established in the works of K. Yano. Namely, a Riemannian manifold admits a metric connection with vectorial torsion, the curvature tensor of which is zero, if and only if it is conformally flat. In this paper, we study the Einstein equation on three-dimensional locally symmetric (pseudo)Riemannian manifolds with metric connection with invariant vectorial torsion. We obtain a theorem stating that all such manifolds are either Einstein manifolds with respect to the Levi-Civita connection or conformally flat.

MSC:

53-XX Differential geometry
58-XX Global analysis, analysis on manifolds
Full Text: DOI

References:

[1] Cartan E. Sur les variétésà connexion affine, et la théorie de la relativité généralisée. II // Ann. Sci.Éc. Norm. Supér. (3). 1925. V. 42. P. 17-88. · JFM 51.0582.01
[2] Muniraja G. Manifolds admitting a semi-symmetric metric connection and a generalization of Schur ′ s theorem // Int. J. Contemp. Math. Sci. 2008. V. 3, N 25. P. 1223-1232. · Zbl 1169.53329
[3] Agricola I., Thier C. The geodesics of metric connections with vectorial torsion // Ann. Global Anal. Geom. 2004. V. 26. P. 321-332. · Zbl 1130.53029
[4] Murathan C.,Özgür C. Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions // Proc. Est. Acad. Sci. 2008. V. 57, N 4. P. 210-216. · Zbl 1218.53018
[5] Yilmaz H. B., Zengin F.Ö., Uysal. S. A. On a semi symmetric metric connection with a special condition on a Riemannian manifold // Eur. J. Pure Appl. Math. 2011. V. 4, N 2. P. 152-161. · Zbl 1389.53024
[6] Zengin F.Ö., Demirbag S. A., Uysal. S. A., Yilmaz H. B. Some vector fields on a Riemannian manifold with semi-symmetric metric connection // Bull. Iran. Math. Soc. 2012. V. 38, N 2. P. 479-490. · Zbl 1303.53025
[7] Agricola I., Kraus M. Manifolds with vectorial torsion // Differ. Geom. Appl. 2016. V. 46. P. 130-147. · Zbl 1339.53046
[8] Yano K. On semi-symmetric metric connection // Rev. Roum. Math. Pures Appl. 1970. V. 15. P. 1579-1586. · Zbl 0213.48401
[9] Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. Pure Appl. Math. 1985. V. 16, N 7. P. 736-740. · Zbl 0577.53017
[10] De U. C., De B. K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanb.Üniv. Fen. Fak. Mat. Derg. 1995. V. 54. P. 111-117. · Zbl 0909.53011
[11] Бессе А. Многообразия Эйнштейна: В 2 т. Пер. с англ. М.: Мир, 1990.
[12] Chaturvedi B. B., Gupta B. K. Study on semi-symmetric metric spaces // Novi Sad J. Math. 2014. V. 44, N 2. P. 183-194. · Zbl 1474.53135
[13] Sekigawa K. On some 3-dimensional curvature homogeneous spaces // Tensor New Ser. 1977. V. 31. P. 87-97. · Zbl 0356.53016
[14] Calvaruso G. Homogeneous structures on three-dimensional Lorentzian manifolds // J. Geom. Phys. 2007. V. 57. P. 1279-1291. · Zbl 1112.53051
[15] Хромова О. П. Применение пакетов символьных вычислений к исследованию оператора одномерной кривизны на нередуктивных однородных псевдоримановых многообрази-ях // Изв. АлтГУ. 2017. № 1. С. 140-143.
[16] Можей Н. П. Когомологии трехмерных однородных пространств // Тр. БГТУ. 2014. № 6. С. 13-18.
[17] Поступила в редакцию 1 августа 2019 г. После доработки 29 сентября 2019 г. Принята к публикации 27 ноября 2019 г.
[18] Клепиков Павел Николаевич, Родионов Евгений Дмитриевич, Хромова Олеся Павловна Алтайский государственный университет, кафедра математического анализа, пр. Ленина, 61, Барнаул 656049 klepikov.math@gmail.com, edr2002@mail.ru, khromova.olesya@gmail.com REFERENCES
[19] Cartan E., “Sur les variétésà connexion affine et la théorie de la relativité généralisée. II,” Ann. Sci.Éc. Norm. Supér. (3), 42, 17-88 (1925). · JFM 51.0582.01
[20] Muniraja G., “Manifolds admitting a semi-symmetric metric connection and a generalization of Schur”s theorem,” Int. J. Contemp. Math. Sci., 3, No. 25, 1223-1232 (2008). · Zbl 1169.53329
[21] Agricola I. and Thier C., “The geodesics of metric connections with vectorial torsion,” Ann. Global Anal. Geom., 26, 321-332 (2004). · Zbl 1130.53029
[22] Murathan C. andÖzgür C., “Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions,” Proc. Est. Acad. Sci., 57, No. 4, 210-216 (2008). · Zbl 1218.53018
[23] Yilmaz H. B., Zengin F.Ö., and Uysal. S. A., “On a semi-symmetric metric connection with a special condition on a Riemannian manifold,” Eur. J. Pure Appl. Math., 4, No. 2, 152-161 (2011). · Zbl 1389.53024
[24] Zengin F.Ö., Demirbag S. A., Uysal. S. A., and Yilmaz H. B., “Some vector fields on a Riemannian manifold with semi-symmetric metric connection,” Bull. Iran. Math. Soc., 38, No. 2, 479-490 (2012). · Zbl 1303.53025
[25] Agricola I. and Kraus M., “Manifolds with vectorial torsion,” Differ. Geom. Appl., 46, 130-147 (2016). · Zbl 1339.53046
[26] Yano K., “On semi-symmetric metric connection,” Rev. Roum. Math. Pures Appl., 15, 1579-1586 (1970). · Zbl 0213.48401
[27] Barua B. and Ray A. Kr., “Some properties of a semi-symmetric metric connection in a Rie-mannian manifold,” Indian J. Pure Appl. Math., 16, No. 7, 736-740 (1985). · Zbl 0577.53017
[28] De U. C. and De B. K., “Some properties of a semi-symmetric metric connection on a Rie-mannian manifold,” Istanb.Üniv. Fen. Fak. Mat. Derg., 54, 111-117 (1995). · Zbl 0909.53011
[29] Besse A., Einstein Manifolds [in Russian], Mir, Moscow (1990).
[30] Chaturvedi B. B. and Gupta B. K., “Study on semi-symmetric metric spaces,” Novi Sad J. Math., 44, No. 2, 183-194 (2014). · Zbl 1474.53135
[31] Sekigawa K., “On some 3-dimensional curvature homogeneous spaces,” Tensor, New Ser., 31, 87-97 (1977). · Zbl 0356.53016
[32] Calvaruso G., “Homogeneous structures on three-dimensional Lorentzian manifolds,” J. Geom. Phys., 57, 1279-1291 (2007). · Zbl 1112.53051
[33] Khromova O. P., “Application of symbolic computation packages to investigation of one-dimensional curvature operator on non-reductive homogeneous pseudo-Riemannian manifolds [in Russian],” Izv. Altaysk. Gos. Univ., 1, 140-143 (2017).
[34] Mozhey N. P., “Cohomology of three-dimensional homogeneous manifolds [in Russian],” Tr. Barnaulsk. Gos. Tekhn. Univ., 6, 13-18 (2014).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.