×

Isometric flows of \(G_2\)-structures. (English) Zbl 07819144

Cerejeiras, Paula (ed.) et al., Current trends in analysis, its applications and computation. Proceedings of the 12th ISAAC congress, Aveiro, Portugal, July 29 – August 3, 2019. Cham: Birkhäuser. Trends Math., 545-553 (2022).
Summary: We survey recent progress in the study of flows of isometric \(G_2\)-structures on seven-dimensional manifolds, that is, flows that preserve the metric, while modifying the \(G_2\)-structure. In particular, heat flows of isometric \(G_2\)-structures have been recently studied from several different perspectives, in particular in terms of 3-forms, octonions, vector fields, and geometric structures. We will give an overview of each approach, the results obtained, and compare the different perspectives.
For the entire collection see [Zbl 1497.42002].

MSC:

53C10 \(G\)-structures
53C29 Issues of holonomy in differential geometry
58E30 Variational principles in infinite-dimensional spaces
58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals

References:

[1] L. Bagaglini, The energy functional of G_2-structures compatible with a background metric. J. Geom. Anal. (2019). doi:10.1007/s12220-019-00264-6 · Zbl 1462.53015
[2] Boling, J.; Kelleher, C.; Streets, J., Entropy, stability and harmonic map flow, Trans. Am. Math. Soc., 369, 8, 5769-5808 (2017) · Zbl 1365.53057 · doi:10.1090/tran/6949
[3] R.L. Bryant, Metrics with exceptional holonomy. Ann. Math. (2) 126(3), 525-576 (1987). doi:10.2307/1971360 · Zbl 0637.53042
[4] R.L. Bryant, Some remarks on G_2-structures, in Proceedings of Gökova Geometry-Topology Conference 2005 (GGT), Gökova (2006), pp. 75-109. math/0305124 · Zbl 1115.53018
[5] Chen, YM; Ding, WY, Blow-up and global existence for heat flows of harmonic maps, Invent. Math., 99, 3, 567-578 (1990) · Zbl 0674.58019 · doi:10.1007/BF01234431
[6] Chen, YM; Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math. Z., 201, 1, 83-103 (1989) · Zbl 0652.58024 · doi:10.1007/BF01161997
[7] T.H. Colding, W.P. Minicozzi II, Generic mean curvature flow I: generic singularities. Ann. Math. (2) 175(2), 755-833 (2012). doi:10.4007/annals.2012.175.2.7 · Zbl 1239.53084
[8] S. Dwivedi, P. Gianniotis, S. Karigiannis, A gradient flow of isometric G_2 structures. J. Geom. Anal. (2019). 1904.10068. doi:10.1007/s12220-019-00327-8
[9] S. Grigorian, Short-time behaviour of a modified Laplacian coflow of G2-structures. Adv. Math. 248, 378-415 (2013). 1209.4347. doi:10.1016/j.aim.2013.08.013 · Zbl 1288.53039
[10] S. Grigorian, G_2-structures and octonion bundles. Adv. Math. 308, 142-207 (2017). 1510.04226. doi:10.1016/j.aim.2016.12.003 · Zbl 1373.53021
[11] S. Grigorian, Estimates and monotonicity for a heat flow of isometric G_2-structures. Calc. Var. Partial Differ. Equ. 58(5), Art. 175, 37 (2019). doi:10.1007/s00526-019-1630-0 · Zbl 1423.53025
[12] N.J. Hitchin, The geometry of three-forms in six dimensions. J. Differ. Geom. 55(3), 547-576 (2000). math/0010054. http://projecteuclid.org/euclid.jdg/1090341263 · Zbl 1036.53042
[13] S. Karigiannis, Deformations of G_2 and Spin(7) structures on manifolds. Can. J. Math. 57, 1012 (2005). math/0301218. doi:10.4153/CJM-2005-039-x · Zbl 1091.53026
[14] S. Karigiannis, Flows of G_2-structures, I. Q. J. Math. 60(4), 487-522 (2009). math/0702077. doi:10.1093/qmath/han020 · Zbl 1190.53025
[15] S. Karigiannis, B. McKay, M.-P. Tsui, Soliton solutions for the Laplacian coflow of some G_2-structures with symmetry. Differ. Geom. Appl. 30(4), 318-333 (2012). 1108.2192. doi:10.1016/j.difgeo.2012.05.003 · Zbl 1256.53043
[16] C. Kelleher, J. Streets, Entropy, stability, and Yang-Mills flow. Commun. Contemp. Math. 18(2), 1550032, 51 (2016). doi:10.1142/S0219199715500327 · Zbl 1336.53040
[17] E. Loubeau, H.N. Sá Earp, Harmonic flow of geometric structures (2019). 1907.06072
[18] Struwe, M., On the evolution of harmonic maps in higher dimensions, J. Differ. Geom., 28, 3, 485-502 (1988) · Zbl 0631.58004
[19] Wood, CM, An existence theorem for harmonic sections, Manuscripta Math., 68, 1, 69-75 (1990) · Zbl 0713.58010 · doi:10.1007/BF02568751
[20] Wood, CM, Harmonic sections and equivariant harmonic maps, Manuscripta Math., 94, 1, 1-13 (1997) · Zbl 0914.58011 · doi:10.1007/BF02677834
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.