×

Generalized convolution operator associated with the \((k, a)\)-generalized Fourier transform on the real line and applications. (English) Zbl 07818529

Summary: Recently in Amri (Product formula for one-dimensional \((k, a)\)-generalized Fourier kernel. arXiv:2301.06587), the author proved the product formula for the one dimensional \((k, a)\)-generalized Fourier kernel. Profiting for this result, the primary aim of the present paper, is to develop the harmonic analysis associated with \((k, a)\) the generalized Fourier transform. Firstly we study the \((k, a)\)-generalized translation operator associated with the \((k, a)\)-generalized Fourier transform. By means of the generalized translation operator, we define and we investigate the generalized convolution product in the setting of the \((k, a)\)-generalized Fourier transform. Nevertheless, significant attention is also devoted to the time-frequency analysis by examining some applications on the wavelet transform in the \((k, a)\)-generalized Fourier transform setting.

MSC:

47G10 Integral operators
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
47G30 Pseudodifferential operators
Full Text: DOI

References:

[1] Amri, B.: Product formula for one-dimensional \((k,a)\)-generalized Fourier kernel. arXiv:2301.06587
[2] Amri, B., Mejjaoli H.: \((k,a)\)-Generalized Riesz transforms and applications. Preprint (2023)
[3] Ben Hamadi, N.; Omri, S., Uncertainty principles for the continuous wavelet transform in the Hankel setting, Appl. Anal., 97, 513-527 (2018) · Zbl 1460.42053 · doi:10.1080/00036811.2016.1276169
[4] Ben Saïd, S.; Kobayashi, T.; Ørsted, B., Laguerre semigroup and Dunkl operators, Compos. Math., 148, 4, 1265-1336 (2012) · Zbl 1255.43004 · doi:10.1112/S0010437X11007445
[5] Ben Saïd, S., A product formula and a convolution structure for a \(k\)-Hankel transform on \({\mathbb{R} } \), J. Math. Anal. Appl., 463, 2, 1132-1146 (2018) · Zbl 1390.42010 · doi:10.1016/j.jmaa.2018.03.073
[6] Ben Saïd, S.; Deleaval, L., A Hardy-Littlewood maximal operator for the generalized Fourier transform on \({\mathbb{R}} \), J. Geol. Anal., 30, 2273-2289 (2020) · Zbl 1436.42027 · doi:10.1007/s12220-019-00183-6
[7] Ben Saïd, S.; Deleaval, L., Translation operator and maximal function for the \((k,1)\)-generalized Fourier transform, J. Funct. Anal., 279, 8, 108706 (2020) · Zbl 1446.42025 · doi:10.1016/j.jfa.2020.108706
[8] Ben Saïd, S., Negzaoui, S.: Flett potentials associated with differential-difference Laplace operators. J. Math. Phys. 63, 033504 (2022). doi:10.1063/5.0063053 · Zbl 1507.47101
[9] Ben Saïd, S.; Negzaoui, S., Norm inequalities for maximal operators, J. Inequal. Appl., 1, 1-18 (2022) · Zbl 1509.42029
[10] Boubatra, MA; Negzaoui, S.; Sifi, M., A new product formula involving Bessel functions, Integr. Transforms Spec. Funct., 33, 3, 247-263 (2022) · Zbl 1515.33008 · doi:10.1080/10652469.2021.1926454
[11] Chettaoui, C.; Othmani, Y., Real Paley-Wiener theorems for the multivariable Bessel transform, Int. J. Open Probl. Complex Anal., 6, 1, 90-110 (2014) · doi:10.12816/0006032
[12] Constales, D.; De Bie, H.; Lian, P., Explicit formulas for the \((\kappa, a)\)-generalized dihedral kernel and the \((\kappa, a)\)-generalized Fourier kernel, J. Math. Anal. Appl., 460, 2, 900-926 (2018) · Zbl 1382.65474 · doi:10.1016/j.jmaa.2017.12.018
[13] Debnath, L.; Shah, FA, Wavelet Transforms and Their Applications (2015), Boston: Birkhäuser, Boston · Zbl 1308.42030 · doi:10.1007/978-0-8176-8418-1
[14] Debnath, L.; Shah, FA, Lecture Notes on Wavelet Transforms (2017), Boston: Birkhäuser, Boston · Zbl 1379.42001 · doi:10.1007/978-3-319-59433-0
[15] De Bie, H.; Xu, Y., On the Clifford-Fourier transform, Int. Math. Res. Not., 22, 5123-5163 (2011) · Zbl 1237.30018
[16] De Bie, H., Clifford algebras, Fourier transforms, and quantum mechanics, Math. Methods Appl. Sci., 35, 18, 2198-2228 (2012) · Zbl 1259.42001 · doi:10.1002/mma.2679
[17] Dunkl, CF, Differential-difference operators associated to reflection groups, Trans. Am. Math. Soc., 311, 167-183 (1989) · Zbl 0652.33004 · doi:10.1090/S0002-9947-1989-0951883-8
[18] Dunkl, CF, Hankel transforms associated to finite reflection groups, Contemp. Math., 138, 123-138 (1992) · Zbl 0789.33008 · doi:10.1090/conm/138/1199124
[19] Giang, DV; Moricz, F., The Cesaro operator is bounded on the Hardy space \(H^1({\mathbb{ R} })\), Acta Sci. Math., 61, 535-544 (1995) · Zbl 0855.47020
[20] Ghobber, S., Some results on wavelet scalograms, Int. J. Wavelets Multiresol. Inf. Process., 15, 3, 1750019 (2017) · Zbl 1367.81097 · doi:10.1142/S0219691317500199
[21] Ghobber, S.; Hkimi, S.; Omri, S., Localization operators and uncertainty principles for the Hankel wavelet transform, Stud. Sci. Math. Hungar., 58, 3, 335-358 (2021) · Zbl 1513.42147
[22] Ghobber, S.; Mejjaoli, H., Deformed wavelet transform and related uncertainty principles, Symmetry, 15, 3, 675 (2023) · doi:10.3390/sym15030675
[23] Gorbachev, D.; Ivanov, V.; Tikhonov, S., Sharp Pitt inequality and logarithmic uncertainty principle for \((k, a)\)-generalized Fourier transform in \(L^2\), J. Approx. Theory, 202, 109-118 (2016) · Zbl 1334.42020 · doi:10.1016/j.jat.2015.10.002
[24] Gorbachev, D., Ivanov, V., Tikhonov S.: On the kernel of the \((k,a)\)-generalized Fourier transform. arXiv:2210.15730
[25] Howe R.: The oscillator semigroup. In: The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), Proceedings of the Symposium Pure Mathematics, vol. 48, pp. 61-132. American Mathematical Society, Providence (1988) · Zbl 0687.47034
[26] Jafarov, E.I., Stoilova, N.I., Van der Jeugt, J.: The \(su(2)_{\alpha }\) Hahn oscillator and a discrete Hahn-Fourier transform. J. Phys. A Math. Theor 44, 355205 (2011) · Zbl 1231.81030
[27] Johansen, TR, Weighted inequalities and uncertainty principles for the \((k, a)\)-generalized Fourier transform, Int. J. Math., 27, 3, 1650019 (2016) · Zbl 1355.43005 · doi:10.1142/S0129167X16500191
[28] Kobayashi, T.; Mano, G., The inversion formula an holomorphic extension of the minimal representation of the conformal group, harmonic analysis, group representations, automorphic forms and invariant theory: in honor of Roger Howe, Word Sci., 2007, 159-223 (2007)
[29] Kumar, V., Ruzhansky, M.: \(L^p-L^q\) boundedness of \((k,a)\)-Fourier multipliers with applications to nonlinear equations. arXiv:2101.03416v1 (2021) · Zbl 1507.42012
[30] Liflyand, E.; Moricz, F., The Hausdorff operator is bounded on the real Hardy space \(H^1({{\mathbb{ R} }})\), Proc. Am. Math. Soc., 128, 1391-1396 (1999) · Zbl 0951.47038 · doi:10.1090/S0002-9939-99-05159-X
[31] Mejjaoli, H.; Sraeib, N., The continuous wavelet transform associated with a differential-difference operator and applications, Commun. Math. Anal., 9, 1, 48-65 (2010) · Zbl 1189.42018
[32] Mejjaoli, H.; Jelassi, M.; Othmani, Y., Multivariable Bessel Gabor transform and applications, Oper. Matrices, 9, 3, 637-657 (2015) · Zbl 1331.42013 · doi:10.7153/oam-09-38
[33] Mejjaoli, H., Spectral theorems associated with the \((k, a)\)-generalized wavelet multipliers, J. Pseudo-Differ. Oper. Appl., 9, 735-762 (2018) · Zbl 06979693 · doi:10.1007/s11868-018-0260-1
[34] Mejjaoli, H., \((k, a)\)-generalized wavelet transform and applications, J. Pseudo-Differ. Oper. Appl., 11, 55-92 (2020) · Zbl 1445.42023 · doi:10.1007/s11868-019-00291-5
[35] Mejjaoli, H.; Trimèche, K., \(k\)-Hankel two-wavelet theory and localization operators, Integr. Transforms Spec. Funct., 31, 8, 620-644 (2020) · Zbl 1457.44001 · doi:10.1080/10652469.2020.1723011
[36] Mejjaoli, H., \(k\)-Hankel Gabor transform on \({\mathbb{R} }^d\) and its applications to the reproducing kernel theory, Complex Anal. Oper. Theory, 15, 14, 1-54 (2021) · Zbl 1486.44007
[37] Mejjaoli, H., Time-frequency analysis associated with \(k\)-Hankel Gabor transform on \({\mathbb{R} }^d \), J. Pseudo-Differ. Oper. Appl., 12, 41, 1-58 (2021) · Zbl 1492.42006 · doi:10.1007/s11868-021-00399-7
[38] Mejjaoli, H., New uncertainty principles for the \((k, a)\)-generalized wavelet transform, Revista de la Unión Matemàtica Argentina, 63, 1, 239-279 (2022) · Zbl 1506.44003 · doi:10.33044/revuma.2051
[39] Mejjaoli, H., Generalized translation operator and uncertainty principles associated with the deformed Stockwell transform, Revista de la Unión Matemàtica Argentina, 65, 2, 375-423 (2023) · Zbl 1531.42018 · doi:10.33044/revuma.2648
[40] Pathak, RS, The Wavelet Transform (2009), Berlin: Springer, Berlin
[41] Prasad, A.; Kumar, P., Composition of the continuous fractional wavelet transform, Nat. Acad. Sci. Lett., 39, 2, 115-120 (2016) · doi:10.1007/s40009-016-0421-9
[42] Rösler, M.: Bessel-type signed hypergroups on \({\mathbb{R} } \). In: Heyer, H., Mukherjea, A. (Eds.) Probability Measures on Groups and Related Structures XI, Proceedings of the Oberwolfach, vol. 1994, pp. 292-304. World Scientific, Singapore (1995) · Zbl 0908.43005
[43] Shah, FA; Tantary, AY, Polar wavelet transform and the associated uncertainty principles, Int. J. Theor. Phys., 57, 6, 1774-1786 (2018) · Zbl 1394.42031 · doi:10.1007/s10773-018-3703-9
[44] Sraeib, N.: k-Hankel Wigner transform and its applications to the Localization operators theory. J. Pseudo-Differ. Oper. Appl. (2022). doi:10.1007/s11868-022-00467-6 · Zbl 1518.43001
[45] Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Series: Princeton Mathematical Series. Princeton University Press, Princeton (1993) · Zbl 0821.42001
[46] Thangavelu, S.; Xu, Y., Convolution operator and maximal functions for Dunkl transform, J. d’Analyse Mathematique, 97, 25-56 (2005) · Zbl 1131.43006 · doi:10.1007/BF02807401
[47] Teng, W.: Hardy inequalities for fractional \((k,a)\)-generalized harmonic oscillator (2020), arXiv:2008.00804
[48] Trimèche, K.: Generalized Wavelets and Hypergroups. Gordon and Breach Science (1997) · Zbl 0926.42016
[49] Wong, MW, Wavelet Transforms and Localization Operators (2002), London: Springer, London · Zbl 1016.42017 · doi:10.1007/978-3-0348-8217-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.