×

An optimal Liouville theorem for the linear heat equation with a nonlinear boundary condition. (English) Zbl 07818485

Summary: Liouville theorems for scaling invariant nonlinear parabolic problems in the whole space and/or the halfspace (saying that the problem does not posses positive bounded solutions defined for all times \(t\in (-\infty,\infty))\) guarantee optimal estimates of solutions of related initial-boundary value problems in general domains. We prove an optimal Liouville theorem for the linear equation in the halfspace complemented by the nonlinear boundary condition \(\partial u/\partial \nu =u^q\), \(q>1\).

MSC:

35B53 Liouville theorems and Phragmén-Lindelöf theorems in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35B44 Blow-up in context of PDEs
35B45 A priori estimates in context of PDEs
35K58 Semilinear parabolic equations

References:

[1] Chlebík, M.; Fila, M., On the blow-up rate for the heat equation with a nonlinear boundary condition, Math. Methods Appl. Sci., 23, 1323-1330, 2000 · Zbl 0980.35073 · doi:10.1002/1099-1476(200010)23:15<1323::AID-MMA167>3.0.CO;2-W
[2] Deng, K.; Fila, M.; Levine, HA, On critical exponents for a system of heat equations coupled in the boundary conditions, Acta Math. Univ. Comenianae, 63, 169-192, 1994 · Zbl 0824.35048
[3] Galaktionov, VA; Levine, HA, On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary, Israel J. Math., 94, 125-146, 1996 · Zbl 0851.35067 · doi:10.1007/BF02762700
[4] Giga, Y.; Kohn, RV, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36, 1-40, 1987 · Zbl 0601.35052 · doi:10.1512/iumj.1987.36.36001
[5] Harada, J., Positive solutions to the Laplace equation with nonlinear boundary conditions on the half space, Calc. Var., 50, 399-435, 2014 · Zbl 1300.35022 · doi:10.1007/s00526-013-0640-6
[6] Harada, J.: Boundary behavior of blowup solutions for a heat equation with a nonlinear boundary condition. NoDEA 27, Article 6 (2020) · Zbl 1440.35199
[7] Hu, B., Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition, Differ. Integral Equ., 7, 301-313, 1994 · Zbl 0820.35062
[8] Hu, B.; Yin, H-M, The profile near blowup time for solution of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346, 117-135, 1994 · Zbl 0823.35020 · doi:10.1090/S0002-9947-1994-1270664-3
[9] Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Amer. Math. Soc., Transl. Math. Monographs, Providence, RI (1968) · Zbl 0174.15403
[10] Lieberman, GM, Second Order Parabolic Differential Equations, 2005, Singapore: World Scientific, Singapore
[11] Poláčik, P.; Quittner, P.; Souplet, Ph, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic equations, Indiana Univ. Math. J, 56, 879-908, 2007 · Zbl 1122.35051 · doi:10.1512/iumj.2007.56.2911
[12] Quittner, P., Liouville theorems for scaling invariant superlinear parabolic problems with gradient structure, Math. Ann., 364, 269-292, 2016 · Zbl 1336.35193 · doi:10.1007/s00208-015-1219-7
[13] Quittner, P., Liouville theorems for superlinear parabolic problems with gradient structure, J. Elliptic Parabolic Equ., 6, 145-153, 2020 · Zbl 1443.35056 · doi:10.1007/s41808-020-00063-z
[14] Quittner, P.: Optimal Liouville theorems for superlinear parabolic problems. Duke Math. J., to appear (Preprint arXiv:2003.13223)
[15] Quittner, P., Souplet, Ph.: Parabolic Liouville-type theorems via their elliptic counterparts. Discrete Contin. Dynam. Systems, Supplement (Proceedings of the 8th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, Dresden 2010), pp. 1206-1213 (2011) · Zbl 1306.35066
[16] Quittner, P., Souplet, Ph.: Superlinear parabolic problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts, Birkhäuser, Basel (2019) · Zbl 1423.35004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.