×

Co-Hopfian and boundedly endo-rigid mixed abelian groups. (English) Zbl 07818421

Summary: For a given cardinal \(\lambda\) and a torsion abelian group \(K\) of cardinality less than \( \lambda \), we present, under some mild conditions (for example, \( \lambda=\lambda^{\aleph_0}\)), boundedly endo-rigid abelian group \(G\) of cardinality \(\lambda\) with \(\operatorname{tor}(G)=K\). Essentially, we give a complete characterization of such pairs \((K, \lambda)\). Among other things, we use a twofold version of the black box. We present an application of the construction of boundedly endo-rigid abelian groups. Namely, we turn to the existence problem of co-Hopfian abelian groups of a given size, and present some new classes of them, mainly in the case of mixed abelian groups. In particular, we give useful criteria to detect when a boundedly endo-rigid abelian group is co-Hopfian and completely determine cardinals \(\lambda> 2^{\aleph_0}\) for which there is a co-Hopfian abelian group of size \(\lambda \).

MSC:

03E75 Applications of set theory
16S50 Endomorphism rings; matrix rings
20K30 Automorphisms, homomorphisms, endomorphisms, etc. for abelian groups

References:

[1] 10.1112/plms/s2-39.1.481 · Zbl 0012.15301 · doi:10.1112/plms/s2-39.1.481
[2] 10.2307/1968763 · Zbl 0061.05405 · doi:10.2307/1968763
[3] 10.1090/S0002-9904-1944-08134-2 · Zbl 0061.02806 · doi:10.1090/S0002-9904-1944-08134-2
[4] 10.2307/1993118 · Zbl 0090.02502 · doi:10.2307/1993118
[5] 10.1093/qmath/20.1.277 · Zbl 0205.32506 · doi:10.1093/qmath/20.1.277
[6] 10.1112/plms/s3-50.3.447 · Zbl 0562.20030 · doi:10.1112/plms/s3-50.3.447
[7] 10.1090/S0002-9904-1962-10775-7 · Zbl 0108.25701 · doi:10.1090/S0002-9904-1962-10775-7
[8] ; Dugas, Manfred; Göbel, Rüdiger, Endomorphism rings of separable torsion-free abelian groups, Houston J. Math., 11, 4, 471, 1985 · Zbl 0597.20046
[9] ; Eklof, Paul C.; Mekler, Alan H., Almost free modules: set-theoretic methods. North-Holland Mathematical Library, 65, 2002 · Zbl 1054.20037
[10] 10.1112/jlms/s2-31.3.468 · Zbl 0571.20051 · doi:10.1112/jlms/s2-31.3.468
[11] ; Fuchs, László, Infinite abelian groups, I. Pure and Applied Mathematics, 36, 1970 · Zbl 0209.05503
[12] ; Fuchs, László, Infinite abelian groups, II. Pure and Applied Mathematics, 36-II, 1973 · Zbl 0257.20035
[13] 10.1007/978-3-319-19422-6 · Zbl 1416.20001 · doi:10.1007/978-3-319-19422-6
[14] 10.1515/9783110218114 · Zbl 1292.16001 · doi:10.1515/9783110218114
[15] ; Kaplansky, Irving, Infinite abelian groups, 1954 · Zbl 0057.01901
[16] 10.2140/pjm.1958.8.511 · Zbl 0084.26601 · doi:10.2140/pjm.1958.8.511
[17] ; Pierce, R. S., Homomorphisms of primary abelian groups, Topics in abelian groups, 215, 1963
[18] 10.1007/BF02757281 · Zbl 0318.02053 · doi:10.1007/BF02757281
[19] ; Shelah, S., Existence of rigid-like families of abelian p-groups, Model theory and algebra. Lecture Notes in Math., 498, 384, 1975 · Zbl 0329.20037
[20] 10.1007/BF02774012 · Zbl 0552.03018 · doi:10.1007/BF02774012
[21] 10.1007/BF02760650 · Zbl 0559.20039 · doi:10.1007/BF02760650
[22] 10.1007/978-3-7091-2814-5_3 · doi:10.1007/978-3-7091-2814-5_3
[23] 10.1007/BFb0082242 · Zbl 0637.03028 · doi:10.1007/BFb0082242
[24] ; Shelah, Saharon, Black boxes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 65, 69, 2022 · Zbl 07911162
[25] 10.1515/form.1990.2.203 · Zbl 0694.20035 · doi:10.1515/form.1990.2.203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.