×

Half-harmonic gradient flow: aspects of a non-local geometric PDE. (English) Zbl 07817693

Summary: The goal of this paper is to discuss some of the results in the author’s previous papers and expand upon the work there by proving two new results: a global weak existence result as well as a first bubbling analysis for the half-harmonic gradient flow in finite time. In addition, an alternative local existence proof to the one provided in \(^{[47]}\) is presented based on a fixed-point argument. This preliminary bubbling analysis leads to two potential outcomes for the possibility of finite-time bubbling until a conjecture by Sire, Wei and Zheng, see \(^{[40]}\), is settled: Either there always exists a global smooth solution to the half-harmonic gradient flow without concentration of energy in finite-time, which still allows for the formation of half-harmonic bubbles as \(t \to +\infty \), or finite-time bubbling may occur in a similar way as for the harmonic gradient flow due to energy concentration in finitely many points. In the first part of the introduction to this paper, we provide a survey of the theory of harmonic and fractional harmonic maps and the associated gradient flows. For clarity’s sake, we restrict our attention to the case of spherical target manifolds \(S^{n-1} \), but our discussion extends to the general case after taking care of technicalities associated with arbitrary closed target manifolds \(N \) (cf. \(^{[48]})\).

MSC:

76-XX Fluid mechanics
35-XX Partial differential equations

References:

[1] A. Audrito, On the existence and Hölder regularity of solutions to some nonlinear Cauchy-Neumann problems, arXiv: 2107.03308.
[2] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245-1260. https://doi.org/10.1080/03605300600987306 · Zbl 1143.26002 · doi:10.1080/03605300600987306
[3] K.-C. Chang, W. Y. Ding, R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom., 36 (1992), 507-515. https://doi.org/10.4310/jdg/1214448751 · Zbl 0765.53026 · doi:10.4310/jdg/1214448751
[4] R. Coifman, P. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, Journal de mathématiques pures et appliquées, 72 (1993), 247-286. · Zbl 0864.42009
[5] F. Da Lio, Compactness and bubbles analysis for half-harmonic maps into spheres, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 201-224. https://doi.org/10.1016/j.anihpc.2013.11.003 · Zbl 1310.58011 · doi:10.1016/j.anihpc.2013.11.003
[6] F. Da Lio, Fractional harmonic maps into manifolds in odd dimensions \(> 1\), Calc. Var., 48 (2013), 421-445. https://doi.org/10.1007/s00526-012-0556-6 · Zbl 1281.58007 · doi:10.1007/s00526-012-0556-6
[7] F. Da Lio, P. Laurain, T. Rivière, A Pohozaev-type formula and quantization of horizontal half-harmonic maps, arXiv: 1607.05504.
[8] F. Da Lio, Fractional harmonic maps, In: Recent developments in nonlocal theory, Warsaw, Poland: De Gruyter, 2018, 52-80. https://doi.org/10.1515/9783110571561-004 · Zbl 1406.58010
[9] F. Da Lio, A. Pigati, Free boundary minimal surfaces: a nonlocal approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XX (2020), 437-489. https://doi.org/10.2422/2036-2145.201801_008 · Zbl 1462.58011 · doi:10.2422/2036-2145.201801_008
[10] F. Da Lio, T. Rivière, 3-Commutator estimates and the regularity of \(1/2\)-harmonic maps into spheres, Anal. PDE, 4 (2011), 149-190. https://doi.org/10.2140/apde.2011.4.149 · Zbl 1241.35035 · doi:10.2140/apde.2011.4.149
[11] F. Da Lio, T. Rivière, Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps, Adv. Math., 277 (2011), 1300-1348. https://doi.org/10.1016/j.aim.2011.03.011 · Zbl 1219.58004 · doi:10.1016/j.aim.2011.03.011
[12] F. Da Lio, A. Schikorra, n/p-Harmonic maps: regularity for the sphere case, Adv. Calc. Var., 7 (2014), 1-26. https://doi.org/10.1515/acv-2012-0107 · Zbl 1281.49034 · doi:10.1515/acv-2012-0107
[13] F. Da Lio, A. Schikorra, On regularity theory for n/p-harmonic maps into manifolds, Nonlinear Anal., 165 (2017), 182-197. https://doi.org/10.1016/j.na.2017.10.001 · Zbl 1374.58006 · doi:10.1016/j.na.2017.10.001
[14] J. Davila, M. Del Pino, J. Wei, Singularity formation for the two-dimensional harmonic map flow in \(S^2\), Invent. Math., 219 (2020), 345-466. https://doi.org/10.1007/s00222-019-00908-y · Zbl 1445.35082 · doi:10.1007/s00222-019-00908-y
[15] J. Eells, J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. · Zbl 0122.40102
[16] A. Freire, Uniqueness for the harmonic map flow from surfaces into general targets, Commentarii Mathematici Helvetici, 70 (1995), 310-338. https://doi.org/10.1007/BF02566010 · Zbl 0831.58018 · doi:10.1007/BF02566010
[17] L. Grafakos, Modern Fourier analysis, 2 Eds., New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2 · Zbl 1158.42001
[18] M. Grüter, Regularity of weak H-surfaces, J. Reine Angew. Math., 1981 (1981), 1-15. https://doi.org/10.1515/crll.1981.329.1 · Zbl 0461.53029 · doi:10.1515/crll.1981.329.1
[19] F. Hélein, Régularité des applications faiblement harmoniques entre une surface et une varitée riemannienne, C. R. Acad. Sci. Paris Sr. I Math., 311 (1990), 591-596.
[20] F. Hélein, Harmonic maps, conservation laws and moving frames, 2 Eds., Cambridge: Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511543036 · Zbl 1010.58010
[21] A. Hyder, A. Segatti, Y. Sire, C. Wang, Partial regularity of the heat flow of half-harmonic maps and applications to harmonic maps with free boundary, Commun Part. Diff. Eq., 47 (2022), 1845-1882. https://doi.org/10.1080/03605302.2022.2091453 · Zbl 1496.35132 · doi:10.1080/03605302.2022.2091453
[22] F. John, Partial differential equations, 3 Eds., New York: Springer, 1978. https://doi.org/10.1007/978-1-4684-0059-5 · Zbl 0426.35002
[23] J. Jost, Geometry and physics, Heidelberg: Springer, 2009. https://doi.org/10.1007/978-3-642-00541-1 · Zbl 1176.53001
[24] O. A. Ladyzhenskaya, Solutions “in the large” of the nonstationary boundary value problem for the Navier-Stokes system with two space variables, Commun. Pure Appl. Math., 7 (1959), 427-433. https://doi.org/10.1002/cpa.3160120303 · Zbl 0103.19502 · doi:10.1002/cpa.3160120303
[25] K. Mazowiecka, A. Schikorra, Fractional div-curl quantities and applications to nonlocal geometric equation, J. Funct. Anal., 275 (2018), 1-44. https://doi.org/10.1016/j.jfa.2018.03.016 · Zbl 1440.42114 · doi:10.1016/j.jfa.2018.03.016
[26] V. Millot, Y. Sire, On a fractional Ginzburg-Landau equation and \(1/2\)-harmonic maps into spheres, Arch. Rational Mech. Anal., 215 (2015), 125-210. https://doi.org/10.1007/s00205-014-0776-3 · Zbl 1372.35291 · doi:10.1007/s00205-014-0776-3
[27] C. Morrey, The problem of plateau on a Riemannian manifold, Ann. Math., 49 (1948), 807-851. · Zbl 0033.39601
[28] E. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bulletin des Sciences Mathématiques, 136 (2012), 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004 · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[29] M. Prats, Measuring Triebel-Lizorkin fractional smoothness on domains in terms of first-order differences, J. London Math. Soc., 100 (2019), 692-716. https://doi.org/10.1112/jlms.12225 · Zbl 1428.42041 · doi:10.1112/jlms.12225
[30] M. Prats, E. Saksman, A \(T(1)\) theorem for fractional Sobolev spaces on domains, J. Geom. Anal., 27 (2017), 2490-2538. https://doi.org/10.1007/s12220-017-9770-y · Zbl 1377.42023 · doi:10.1007/s12220-017-9770-y
[31] T. Rivière, Le flot des applications faiblement harmoniques en dimension deux, PhD thesis, 1993.
[32] T. Rivière, Conservation laws for conformally invariant variational problems, Invent. Math., 168 (2007), 1-22. https://doi.org/10.1007/s00222-006-0023-0 · Zbl 1128.58010 · doi:10.1007/s00222-006-0023-0
[33] T. Rivière, Conformally invariant variational problems, arXiv: 1206.2116.
[34] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of \(2\)-spheres, Ann. Math., 113 (1981), 1-24. https://doi.org/10.2307/1971131 · Zbl 0462.58014 · doi:10.2307/1971131
[35] A. Schikorra, Regularity of n/2-harmonic maps into the sphere, J. Differ. Equations, 252 (2012), 1862-1911. https://doi.org/10.1016/j.jde.2011.08.021 · Zbl 1237.58018 · doi:10.1016/j.jde.2011.08.021
[36] A. Schikorra, Y. Sire, C. Wang, Weak solutions of geometric flows associated to integro-differential harmonic maps, Manuscripta Math., 153 (2017), 389-402. https://doi.org/10.1007/s00229-016-0899-y · Zbl 1372.35326 · doi:10.1007/s00229-016-0899-y
[37] R. Schoen, S. Yau, Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Commentarii Mathematici Helvetici, 51 (1976), 333-341. https://doi.org/10.1007/BF02568161 · Zbl 0361.53040 · doi:10.1007/BF02568161
[38] H. Schmeisser, H. Triebel, Topics in Fourier analysis and function spaces, Chichester: J. Wiley, 1987. · Zbl 0661.46025
[39] J. Shatah, Weak solutions and development of singularities of the \(SU(2) \sigma \)-model, Commun Pure Appl. Math., 41 (1988), 459-469. https://doi.org/10.1002/cpa.3160410405 · Zbl 0686.35081 · doi:10.1002/cpa.3160410405
[40] Y. Sire, J. Wei, Y. Zheng, Infinite time blow-up for half-harmonic map flow from \(\mathbb{R}\) into \(S^1\), arXiv: 1711.05387.
[41] M. Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Commentarii Mathematici Helvetici, 60 (1985), 558-581. https://doi.org/10.1007/BF02567432 · Zbl 0595.58013 · doi:10.1007/BF02567432
[42] M. Struwe, On the evolution of harmonic maps in higher dimension, J. Differential Geom., 28 (1988), 485-502. https://doi.org/10.4310/jdg/1214442475 · Zbl 0631.58004 · doi:10.4310/jdg/1214442475
[43] M. Struwe, Plateau flow or the heat flow for half-harmonic maps, arXiv: 2202.02083.
[44] P. Topping, Reverse bubbling and nonuniqueness in the harmonic map flow, Int. Math. Res. Notices, 10 (2002), 505-520. https://doi.org/10.1155/S1073792802105083 · Zbl 1003.58014 · doi:10.1155/S1073792802105083
[45] K. Uhlenbeck, Connections with \(L^p\) bounds on curvature, Commun. Math. Phys., 83 (1982), 31-42. https://doi.org/10.1007/BF01947069 · Zbl 0499.58019 · doi:10.1007/BF01947069
[46] H. Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., 26 (1969), 318-344. https://doi.org/10.1016/0022-247X(69)90156-5 · Zbl 0181.11501 · doi:10.1016/0022-247X(69)90156-5
[47] J. Wettstein, Uniqueness and regularity of the fractional harmonic gradient flow in \(S^{n-1}\), Nonlinear Anal., 214 (2022), 112592. https://doi.org/10.1016/j.na.2021.112592 · Zbl 1477.35002 · doi:10.1016/j.na.2021.112592
[48] J. Wettstein, Existence, uniqueness and regularity of the fractional harmonic gradient flow in general target manifolds, arXiv: 2109.11458.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.