×

Interaction of in-plane waves with a structured penetrable line defect in an elastic lattice. (English) Zbl 07816988

Summary: We consider the scattering of in-plane waves that interact with an edge of a structured penetrable inertial line defect contained in a triangular lattice, composed of periodically placed masses interconnected by massless elastic rods. The steady state problem for a time-harmonic excitation is converted into a vector Wiener-Hopf equation using the Fourier transform. The matrix Wiener-Hopf kernel of this equation describes the dynamic phenomena engaged in the scattering process, which includes instances where localised interfacial waves can emerge along the structured defect. This information is exploited to identify the dependency of the existence of these waves on the incident wave parameters and the properties of inertial defect. Symmetry in the structure of the scattering medium allows us to convert the vectorial problem into a pair of uncoupled scalar Wiener-Hopf equations posed along the lattice row containing the defect. The solution embodies an exact representation of the scattered field, in terms of a contour integral in the complex plane, that includes the contributions of evanescent and propagating waves. The solution reveals that in the remote lattice, the reflected and transmitted components of incident field are accompanied by dynamic modes from three symmetry classes, which include localised interfacial waves. These classes correspond to tensile modes acting transverse to the defected lattice row, shear modes that act parallel to this row, and wave modes represented as a mixture of these two responses. Benchmark finite element calculations are also provided to validate the results against our semi-analytical solution which involves, in particular, numerical computation of the contour integrals. Graphical illustrations demonstrate special dynamic responses encountered during the wave scattering process, including dynamic anisotropy, negative reflection and negative refraction.

MSC:

74-XX Mechanics of deformable solids
78-XX Optics, electromagnetic theory

References:

[1] Abeyaratne, R.; Vedantam, S., A lattice-based model of the kinetics of twin boundary motion, Journal of Mathematical PhysicsS, 51, 9, 1675-1700, (2003) · Zbl 1048.74031
[2] Abrahams, I. D.; Huang, X.; Kisil, A.; Mishuris, G.; Nieves, M.; Rogosin, S., Reinvigorating the Wiener-hopf technique in the pursuit of understanding processes and materials, National Science Review, 8, 2, Article nwaa225 pp., (2021)
[3] Achenbach, J. D., Wave propagation in elastic solids, (1973), North-Holland publishing company: North-Holland publishing company Amsterdam · Zbl 0268.73005
[4] An, X.; Fan, H.; Zhang, C., Elastic wave and vibration bandgaps in planar square metamaterial-based lattice structures, Journal of Sound and Vibration, 475, Article 115292 pp., (2020)
[5] Argatov, I. I.; Sabina, F. J., Transient scattering of a Rayleigh wave by a cluster of subwavelength resonators—Towards asymptotic modeling of seismic surface metabarriers, International Journal of Engineering Sciences, 194, Article 103963 pp., (2024) · Zbl 07791643
[6] Ashok, R.; Manam, S. R., Oblique water wave scattering by vertical elastic porous barriers int, Journal of Engineering Sciences, 169, Article 103578 pp., (2021) · Zbl 07444793
[7] Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C., Logic circuits with carbon nanotube transistors, Science, 294, 1317, (2001)
[8] Bacigalupo, A.; Gambarotta, L., Identification of non-local continua for lattice-like materials, International Journal of Engineering Science, 159, Article 103430 pp., (2021) · Zbl 07314428
[9] Banerjee, A.; Das, R.; Calius, E. P., Waves in structured mediums or metamaterials: a review, Archives of Computational Methods in Engineering, 26, 1029-1058, (2019)
[10] Berinskii, I.; Eremeyev, V. A., On dynamics of origami-inspired rod, International Journal of Engineering Science, 193, Article 103944 pp., (2023) · Zbl 07776188
[11] Berinskii, I. E.; Slepyan, L. I., How a dissimilar chain is splitting, Journal of Mechanics and Physics of Solids, 107, 509-524, (2017)
[12] Berkolaiko, G.; Kuchment, P., Introduction to quantum graphs (no. 186), (2013), American Mathematical Soc · Zbl 1318.81005
[13] Blitz, J.; Simpson, G., Ultrasonic methods of non-destructive testing, (1995), Springer Science & Business Media
[14] Bolshak, G.; Ryvkin, M., Bio-inspired beam lattice materials with sacrificial bonds, International Journal of Engineering Science, 193, Article 103938 pp., (2023) · Zbl 07776184
[15] Bordiga, G.; Cabras, L.; Piccolroaz, A.; Bigoni, D., Dynamics of prestressed elastic lattices: Homogenization, instabilities, and strain localization, Journal of Mathematical PhysicsS, 146, Article 104198 pp., (2021)
[16] Bordiga, G.; Piccolroaz, A.; Bigoni, D., A way to hypo-elastic artificial materials without a strain potential and displaying flutter instability, Journal of Mathematical PhysicsS, 158, Article 104665 pp., (2022)
[17] Brillouin, L., Wave propagation in periodic structures; electric filters and crystal lattices, (1953), Dover Publications: Dover Publications New York · Zbl 0050.45002
[18] Brun, M.; Giaccu, G. F.; Movchan, A. B.; Slepyan, L. I., Transition wave in the collapse of the San Saba Bridge, Frontiers in Materials, 1, 12, (2014)
[19] Brun, M.; Movchan, A. B.; Slepyan, L. I., Transition wave in a supported heavy beam, Journal of Mathematical PhysicsS, 61, 10, 2067-2085, (2013)
[20] Bugarija, S.; Gibson, P. C.; Hu, G.; Li, P.; Zhao, Y., Inverse scattering for the one-dimensional Helmholtz equation with piecewise constant wave speed, Inverse Problems, 36, 7, Article 075008 pp., (2020) · Zbl 1448.34156
[21] Carta, G.; Jones, I. S.; Movchan, N. V.; Movchan, A. B.; Nieves, M. J., Deflecting elastic prism and unidirectional localisation for waves in chiral elastic systems, Nature Scientific Reports, 7, 26, (2017)
[22] Carta, G.; Nieves, M. J.; Brun, M., Forcing the silence of the lamb waves: Uni-directional propagation in structured gyro-elastic strips and networks, European Journal of Mechanics. A. Solids, 101, Article 105070 pp., (2023) · Zbl 1528.74052
[23] Carta, G.; Nieves, M. J.; Brun, M., Lamb waves in discrete homogeneous and heterogeneous systems: Dispersion properties, asymptotics and non-symmetric wave propagation, European Journal of Mechanics. A. Solids, 100, Article 104695 pp., (2023) · Zbl 1519.74031
[24] Celli, V.; Flytzanis, N., Motion of a screw dislocation in a crystal, Journal of Applied Physics, 41, 11, 4443-4447, (1970)
[25] Chatterjee, T.; Karličić, D.; Adhikari, S.; Friswell, M. I., Wave propagation in randomly parameterized 2D lattices via machine learning, Composite Structures, 275, Article 114386 pp., (2021)
[26] Chen, Y.; Liu, X.; Hu, G., Topological phase transition in mechanical honeycomb lattice, Journal of Mathematical PhysicsS, 122, 54-68, (2019)
[27] Chen, C. H.; Zhang, H. P.; Niemczura, J.; Ravi-Chandar, K.; Marder, M., Scaling of crack propagation in rubber sheets, Europhysics Letters, 96, 3, 36009, (2011)
[28] Cherkaev, A.; Ryvkin, M., Damage propagation in 2d beam lattices: 1. Uncertainty and assumptions, Archive of Applied Mechanics, 89, 485-501, (2019)
[29] Cherkaev, A.; Ryvkin, M., Damage propagation in 2d beam lattices: 2. Design of an isotropic fault-tolerant lattice, Archive of Applied Mechanics, 89, 503-519, (2019)
[30] Chindam, C.; Lakhtakia, A.; Awadelkarim, O. O., Parylene-C microfibrous thin films as phononic crystals, Journal of Micromechanics and Microengineering, 27, 7, Article 075012 pp., (2017)
[31] Cohen, T.; Givli, S., Dynamics of a discrete chain of bi-stable elements: A biomimetic shock absorbing mechanism, Journal of Mathematical PhysicsS, 64, 426-439, (2014)
[32] Colquitt, D. J.; Jones, I. S.; Movchan, N. V.; Movchan, A., Dispersion and localization of elastic waves in materials with microstructure, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 467, 2874-2895, (2011) · Zbl 1245.74025
[33] Colquitt, D. J.; Jones, I. S.; Movchan, N. V.; Movchan, A. B.; Brun, M.; McPhedran, R. C., Making waves round a structured cloak: lattices, negative refraction and fringes, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 469, Article 20130218 pp., (2013)
[34] Colton, D.; Kress, R., Integral equation methods in scattering theory, Society for Industrial and Applied Mathematics, (2013) · Zbl 1291.35003
[35] Coutant, A.; Zhang, L. Y.; Achilleos, V.; Richoux, O.; Theocharis, G.; Pagneux, V., Topologically invisible defects in chiral mirror lattices, (2023), arXiv:2303.02029
[36] Craster, R. V.; Kaplunov, J.; Pichugin, A. V., High-frequency homogenization for periodic media, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466, 2120, 2341-2362, (2010) · Zbl 1196.35038
[37] Crighton, D. G.; Leppington, F. G., On the scattering of aerodynamic noise, Journal of Fluid Mechanics, 46, 3, 577-597, (1971) · Zbl 0224.76083
[38] Delourme, B.; Fliss, S., Guided modes in a hexagonal periodic graph like domain, (2023), arXiv preprint arXiv:2309.02023
[39] Deng, B.; Wang, P.; Tournat, V.; Bertoldi, K., Nonlinear transition waves in free-standing bistable chains, Journal of Mathematical PhysicsS, 136, Article 103661 pp., (2020)
[40] Dharmavaram, S.; Perotti, L. E., A Lagrangian formulation for interacting particles on a deformable medium, Computer Methods in Applied Mechanics and Engineering, 364, Article 112949 pp., (2020) · Zbl 1442.74131
[41] Do, N.; Kuchment, P.; Sottile, F., Generic properties of dispersion relations for discrete periodic operators, Journal of Mathematical Physics, 61, 10, (2020) · Zbl 1454.81060
[42] Fefferman, C. L.; Fliss, S.; Weinstein, M. I., Discrete honeycombs, rational edges and edge states, (2022), arXiv preprint arXiv:2203.03775
[43] Fefferman, C. L.; Fliss, S.; Weinstein, M. I., Edge states in rationally terminated honeycomb structures, Proceedings of the National Academy of Sciences, 119, 47, Article e2212310119 pp., (2022)
[44] Felsen, L. B.; Marcuvitz, N., Radiation and scattering of waves, (1973), Prentice-Halls: Prentice-Halls Englewood Cliffs NJ
[45] Ferguson, A. S., Tant, K. M. M., & Mulholland, A. J. (2021). Modelling of Ultrasonic Waves in Layered Elastic Heterogeneous Materials. In 2021 IEEE international ultrasonics symposium (pp. 1-4).
[46] Fouque, J.-P.; Garnier, J.; Papanicolaou, G.; Sølna, K., Wave propagation and time reversal in randomly layered media, (2007), Springer: Springer New York · Zbl 1386.74001
[47] Garau, M.; Carta, G.; Nieves, M. J.; Jones, I. S.; Movchan, N. V.; Movchan, A. B., Interfacial waveforms in chiral lattices with gyroscopic spinners, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 474, Article 20180132 pp., (2018) · Zbl 1404.74010
[48] Garau, M.; Nieves, M. J.; Carta, G.; Brun, M., Transient response of a gyro-elastic structured medium: Unidirectional waveforms and cloaking, International Journal of Engineering Science, 143, 115-141, (2019) · Zbl 1479.70007
[49] Garland, A. P.; White, B. C.; Jensen, S. C.; Boyce, B. L., Pragmatic generative optimization of novel structural lattice metamaterials with machine learning, Materials & Design, 203, Article 109632 pp., (2021)
[50] Garnier, J., Imaging in randomly layered media by cross-correlating noisy signals, Multiscale Modeling and Simulation, 4, 2, 610-640, (2005) · Zbl 1089.76054
[51] Garnier, J.; Sharma, B. L., Effective dynamics in lattices with random mass perturbations, (2023), arXiv:2309.03090
[52] Gibson, P. C., The combinatorics of scattering in layered media, SIAM Journal on Applied Mathematics, 74, 4, 919-938, (2014) · Zbl 1299.74093
[53] Gorbushin, N.; Mishuris, G., Analysis of dynamic failure of the discrete chain structure with non-local interactions, Mathematical Methods in the Applied Sciences, 40, 3355-3365, (2017) · Zbl 1368.74042
[54] Gorbushin, N.; Mishuris, G., Dynamic fracture of a discrete media under moving load, Internation Journal of Solids and Structures, 130-131, 280-295, (2018)
[55] Gorbushin, N.; Mishuris, G., Dynamic fracture of a dissimilar chain, Philosophical Transactions of the Royal Society, Series A, 377, Article 20190103 pp., (2019) · Zbl 1462.74138
[56] Gorbushin, N.; Vitucci, G.; Mishuris, G.; Volkov, G., Influence of fracture criteria on dynamic fracture in a discrete chain, Internation Journal of Fracture, 209, 131-142, (2017)
[57] Gower, A. L.; Abrahams, I. D.; Parnell, W. J., A proof that multiple waves propagate in ensemble-averaged particulate materials, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 475, Article 20190344 pp., (2019) · Zbl 1472.74106
[58] Heins, A. E.; Silver, S., The edge conditions and field representation theorems in the theory of electromagnetic diffraction, Mathematical Proceedings of the Cambridge Philosophical Society, 51, 149-161, (1965) · Zbl 0064.21306
[59] Horn, M. W.; Pickett, M. D.; Messier, R.; Lakhtakia, A., Selective growth of sculptured nanowires on microlithographic lattices, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 22, 6, 3426-3430, (2004)
[60] Huang, K. X.; Shui, G. S.; Wang, Y. Z.; Wang, Y. S., Discrete scattering and meta-arrest of locally resonant elastic wave metamaterials with a semi-infinite crack, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 477, 2253, Article 20210356 pp., (2021)
[61] Huang, K. X.; Shui, G. S.; Wang, Y. Z.; Wang, Y. S., Enhanced fracture resistance induced by coupling multiple degrees of freedom in elastic wave metamaterials with local resonators, Journal of Elasticity, 144, 33-53, (2021) · Zbl 1465.74149
[62] Huang, K. X.; Shui, G. S.; Wang, Y. Z.; Wang, Y. S., Kinking prohibition enhancement of interface crack in artificial periodic structures with local resonators, Journal of Mathematical PhysicsS, 180, Article 105421 pp., (2023)
[63] Hussein, Nassar; Yousefzadeh, Behrooz; Fleury, Romain; Ruzzene, Massimo; Alù, Andrea; Daraio, Chiara, Nonreciprocity in acoustic and elastic materials, Nature Reviews Materials, 5, 9, 667-685, (2020)
[64] Hwang, M.; Arrieta, A. F., Topological wave energy harvesting in bistable lattices, Smart Materials and Structures, 31, 1, Article 015021 pp., (2021)
[65] Isozaki, H.; Korotyaev, E., Inverse problems, trace formulae for discrete Schrödinger operators, (Annales henri poincare. vol. 13, no. 4, (2012), SP Birkhäuser Verlag Basel: SP Birkhäuser Verlag Basel Basel) · Zbl 1250.81124
[66] Kadic, M.; Milton, G. W.; van Hecke, M.; Wegener, M., 3D metamaterials, Nature Reviews Physics, 1, 3, 198-210, (2019)
[67] Kadic, M.; Wegener, M.; Nicolet, A.; Zolla, F.; Guenneau, S.; Diatta, A., Elastodynamic cloaks designed by direct lattice transformations, Wave Motion, 92, Article 102419 pp., (2020) · Zbl 1524.74353
[68] Kamotski, I. V.; Smyshlyaev, V. P., Bandgaps in two-dimensional high-contrast periodic elastic beam lattice materials, Journal of Mathematical PhysicsS, 123, 292-304, (2019) · Zbl 1474.74069
[69] Kanaun, S., Scattering of acoustic waves on a planar screen of arbitrary shape: Direct and inverse problems, International Journal of Engineering Sciences, 92, 28-46, (2015) · Zbl 1423.78010
[70] Khuong, T. A.V.; Zepeda, G.; Ruiz, R.; Khan, S. I.; Garcia-Garibay, M. A., Molecular compasses and gyroscopes: Engineering molecular crystals with fast internal rotation, Crystal Growth & Design, 4, 1, 15-18, (2004)
[71] Kim, B. L.; Chong, C.; Hajarolasvadi, S.; Wang, Y.; Daraio, C., Dynamics of time-modulated, nonlinear phononic lattices, Physical Review E, 107, 3, Article 034211 pp., (2023)
[72] Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature, 458, 872, (2009)
[73] Kresse, O.; Truskinovsky, L., Mobility of lattice defects, Journal of Mathematical PhysicsS, 51, 7, 1305-1332, (2003) · Zbl 1077.74512
[74] Kulakhmetova, S. A.; Saraikin, V. A.; Slepyan, L. I., Plane problem of a crack in a lattice, Mechanics of Solids, 19, 3, 102-108, (1984)
[75] Kuo, H.-Y.; Yu, S.-H., Effect of the imperfect interface on the scattering of SH wave in a piezoelectric cylinder in a piezomagnetic matrix, International Journal of Engineering Sciences, 85, 186-202, (2014)
[76] Ladygin, V. V.; Korotaev, P. Y.; Yanilkin, A. V.; Shapeev, A. V., Lattice dynamics simulation using machine learning interatomic potentials, Computational Materials Science, 172, Article 109333 pp., (2020)
[77] Lawrie, T.; Tanner, G.; Chronopoulos, D., A quantum graph approach to metamaterial design, Scientific Reports, 12, 18006, (2022)
[78] Lee, C. H.; Li, G.; Jin, G.; Liu, Y.; Zhang, X., Topological dynamics of gyroscopic and floquet lattices from Newton’s laws, Physical Review B, 97, 8, Article 085110 pp., (2018)
[79] Marder, M. P., Condensed matter physics, (2010), John Wiley & Sons
[80] Marder, M.; Chen, C. H.; Patzek, T., Simple models of the hydrofracture process, Physical Review E, 92, 6, Article 062408 pp., (2015)
[81] Marder, M.; Gross, S., Origin of crack tip instabilities, Journal of Mathematical PhysicsS, 43, 1, 1-48, (1995) · Zbl 0878.73053
[82] Markov, A.; Markov, M.; Levin, V.; Ronquillo Jarillo, G., Electromagnetic field excitation during the scattering of an acoustic wave on an inhomogeneity in a poroelastic medium, International Journal of Engineering Sciences, 182, Article 103784 pp., (2023) · Zbl 07646843
[83] Markov, M.; Markov, A.; Levin, V.; Sabina, F. J., Electromagnetic field generated by acoustic wave scattering at a poroelastic inclusion located in a fluid, International Journal of Engineering Sciences, 26, Article 103766 pp., (2022) · Zbl 07622655
[84] Martin, P. A., Multiple scattering, (Interaction of time-harmonic waves with N obstacles (no. 107), (2006), Cambridge University Press) · Zbl 1160.76043
[85] Maurel, A.; Martin, P. A.; Pagneux, V., Effective propagation in a one-dimensional perturbed periodic structure: comparison of several approaches, Waves in Random and Complex Media, (2010) · Zbl 1267.76102
[86] Maurya, G.; Sharma, B. L., Scattering by two staggered semi-infinite cracks on square lattice: an application of asymptotic Wiener-Hopf factorization, Zeitschrift für angewandte Mathematik und Physik, 70, 5, 133, (2019) · Zbl 1425.74242
[87] Maurya, G.; Sharma, B. L., Wave scattering on lattice structures involving an array of cracks, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 476, 2236, Article 20190866 pp., (2020) · Zbl 1472.74120
[88] McClements, D. J., Ultrasonic characterisation of emulsions and suspensions, Advances in Colloid and Interface Science, 37, 1-2, 33-72, (1991)
[89] Mishuris, G. S.; Movchan, A. B.; Bigoni, D., Dynamics of a fault steadily propagating within a structural interface, SIAM Journal on Multiscale Modelling and Simulation, 10, 936-953, (2012) · Zbl 1260.74017
[90] Mishuris, G. S.; Movchan, A. B.; Slepyan, L. I., Waves and fracture in an inhomogeneous lattice structure, Waves in Random and Complex Media, 17, 4, 409-428, (2007) · Zbl 1191.74005
[91] Mishuris, G. S.; Movchan, A. B.; Slepyan, L. I., Dynamics of a bridged crack in a discrete lattice, Quarterly Journal of Mechanics and Applied Mathematics, 61, 151-159, (2008) · Zbl 1138.74045
[92] Mishuris, G. S.; Movchan, A. B.; Slepyan, L. I., Localised knife waves in a structured interface, Journal of Mathematical PhysicsS, 57, 1958-1979, (2009) · Zbl 1244.74125
[93] Mitchell, N. P.; Nash, L. M.; Irvine, W. T., Tunable band topology in gyroscopic lattices, Physical Review B, 98, 17, Article 174301 pp., (2018)
[94] Mokhtari, A. A.; Lu, Y.; Zhou, Q.; Amirkhizi, A., Scattering of in-plane elastic waves at metamaterial interfacee, International Journal of Engineering Sciences, 150, Article 103278 pp., (2020) · Zbl 07205494
[95] Monette, L.; Anderson, M. P., Elastic and fracture properties of the two-dimensional triangular and square lattices, Modelling and Simulation in Materials Science and Engineering, 2, 1, 53, (1994)
[96] Montiel, F.; Bonnefoy, F.; Ferrant, P.; Bennetts, L. G.; Squire, V. A.; Marsault, P., Hydroelastic response of floating elastic discs to regular waves. Part 1. Wave basin experiments, Journal of Fluid Mechanics, 723, 604-628, (2013) · Zbl 1287.76065
[97] Morse, P. M.; Ingard, K. U., Theoretical acoustics, (1968), McGraw-Hill: McGraw-Hill New York
[98] Mortazavi, B.; Novikov, I. S.; Podryabinkin, E. V.; Roche, S.; Rabczuk, T.; Shapeev, A. V., Exploring phononic properties of two-dimensional materials using machine learning interatomic potentials, Applied Materials Today, 20, Article 100685 pp., (2020)
[99] Movchan, A. B.; Brun, M.; Slepyan, L. I.; Giaccu, G. F., Dynamic multi-structure in modelling a transition flexural wave, Mathematika, 61, 2, 444-456, (2015) · Zbl 1321.35233
[100] Mueller, J.; Matlack, K. H.; Shea, K.; Daraio, C., Energy absorption properties of periodic and stochastic 3D lattice materials, Advanced Theory and Simulations, 2, 10, Article 1900081 pp., (2019)
[101] Murat, M.; Anholt, M.; Wagner, H. D., Fracture behavior of short-fiber reinforced materials, Journal of Materials Research, 7, 11, 3120-3131, (1992)
[102] Nash, L. M.; Kleckner, D.; Read, A.; Vitelli, V.; Turner, A. M.; Irvine, W. T., Topological mechanics of gyroscopic metamaterials, Proceedings of the National Academy of Sciences, 112, 47, 14495-14500, (2015)
[103] Nieves, M. J.; Carta, G.; Pagneux, V.; Brun, M., Rayleigh waves in micro-structured elastic systems: non-reciprocity and energy symmetry breaking, International Journal of Engineering Science, 156, Article 103365 pp., (2020) · Zbl 07261123
[104] Nieves, M. J.; Carta, G.; Pagneux, V.; Brun, M., Directional control of Rayleigh wave propagation in an elastic lattice by gyroscopic effects, Frontiers in Materials, 7, Article 602960 pp., (2021)
[105] Nieves, M. J.; Mishuris, G. S.; Slepyan, L. I., Analysis of dynamic damage propagation in discrete beam structures, International Journal of Solids and Structures, 97, 699-713, (2016)
[106] Nieves, M. J.; Mishuris, G. S.; Slepyan, L. I., Transient wave in a transformable periodic flexural structure, International Journal of Solids and Structures, 112, 185-208, (2017)
[107] Nieves, M. J.; Movchan, A. B.; Jones, I. S.; Mishuris, G. S., Propagation of Slepyan’s crack in a non-uniform elastic lattice, Journal of Mathematical PhysicsS, 61, 6, 1464-1488, (2013)
[108] Nitecki, S.; Givli, S., The mechanical behavior of 2-D lattices with bi-stable springs, Journal of Mathematical PhysicsS, 157, Article 104634 pp., (2021)
[109] Noble, B., Methods based on the Wiener-Hopf technique, (1958), Pergamon Press: Pergamon Press London · Zbl 0082.32101
[110] Novikov, R.; Sharma, B. L., Phase recovery from phaseless scattering data for discrete Schrödinger operatorss, Inverse Problems, 39, Article 125006 pp., (2023) · Zbl 07765706
[111] Novikov, R.; Sharma, B. L., Inverse source problem for discrete helmholtz equation, (2024), arXiv preprint arXiv:2401.14103
[112] Pajunen, K.; Celli, P.; Daraio, C., Prestrain-induced bandgap tuning in 3D-printed tensegrity-inspired lattice structures, Extreme Mechanics Letters, 44, Article 101236 pp., (2021)
[113] Palermo, A.; Yousefzadeh, B.; Daraio, C.; Marzani, A., Rayleigh wave propagation in nonlinear metasurfaces, Journal of Sound and Vibration, 520, Article 116599 pp., (2022)
[114] Pechenik, L.; Levine, H.; Kessler, D. A., Steady-state mode I cracks in a viscoelastic triangular lattice, Journal of Mathematical PhysicsS, 50, 3, 583-613, (2002) · Zbl 1116.74419
[115] Piccolroaz, A.; Gorbushin, N.; Mishuris, G.; Nieves, M. J., Dynamic phenomena and crack propagation in dissimilar elastic lattices, International Journal of Engineering Science, 149, Article 103208 pp., (2020) · Zbl 1476.74136
[116] Pinfield, V. J., Advances in ultrasonic monitoring of oil-in-water emulsions, Food Hydrocolloids, 42, 48-55, (2014)
[117] Pouget, J., Stability of nonlinear structures in a lattice model for phase transformations in alloys, Physical Review B, 46, 17, 10554, (1992)
[118] Puglisi, G.; Truskinovsky, L., Mechanics of a discrete chain with bi-stable elements, Journal of Mathematical PhysicsS, 48, 1, 1-27, (2000) · Zbl 0973.74060
[119] Scarpetta, E.; Tibullo, V., Wave propagation through scattering structures made by cascading screens of finite thickness, International Journal of Engineering Sciences, 47, 9, 840-851, (2009) · Zbl 1213.74179
[120] Shaban, W.; Vainberg, B., Radiation conditions for the difference Schrödinger operators, Applicable Analysis, 80, 3-4, 525-556, (2001) · Zbl 1026.47025
[121] Shanin, A. V.; Korolkov, A. I., Sommerfeld-type integrals for discrete diffraction problems, Wave Motion, 97, Article 102606 pp., (2020) · Zbl 1524.78041
[122] Shanin, A. V.; Korolkov, A. I., Diffraction by a Dirichlet right-angle on a discrete planar lattice, Quarterely of Applied Mathematics, 80, 1, 277-315, (2022) · Zbl 1527.78013
[123] Sharma, B. L., Diffraction of waves on square lattice by semi-infinite crack, SIAM Journal on Applied Mathematics, 75, 3, 1171-1192, (2015) · Zbl 1322.78010
[124] Sharma, B. L., Diffraction of waves on square lattice by semi-infinite rigid constraint, Wave Motion, 59, 2015, 52-68, (2015) · Zbl 1467.35111
[125] Sharma, B. L., Discrete sommerfeld diffraction problems on hexagonal lattice with a zigzag semi-infinite crack and rigid constraint, Zeitschrift für angewandte Mathematik und Physik, 66, 6, 3591-3625, (2015) · Zbl 1336.78009
[126] Sharma, B. L., Near-tip field for diffraction on square lattice by crack, SIAM Journal on Applied Mathematics, 75, 4, 1915-1940, (2015) · Zbl 1333.74049
[127] Sharma, B. L., Near-tip field for diffraction on square lattice by rigid constraint, Zeitschrift für angewandte Mathematik und Physik, 66, 5, 2719-2740, (2015) · Zbl 1327.78013
[128] Sharma, B. L., Edge diffraction on triangular and hexagonal lattices: Existence, uniqueness, and finite section, Wave Motion, 65, 55-78, (2016) · Zbl 1467.35307
[129] Sharma, B. L., Diffraction of waves on triangular lattice by a semi-infinite rigid constraint and crack, International Journal of Solids and Structures, 80, 465-485, (2016)
[130] Sharma, B. L., On energy balance and the structure of radiated waves in kinetics of crystalline defects, Journal of the Mechanics and Physics of Solids, 96, 88-120, (2016) · Zbl 1482.74053
[131] Sharma, B. L., Wave propagation in bifurcated waveguides of square lattice strips, SIAM Journal on Applied Mathematics, 76, 4, 1355-1381, (2016) · Zbl 1371.78071
[132] Sharma, Continuum limit of discrete sommerfeld problems on square lattice, Sādhanā, 42, 713-728, (2017) · Zbl 1381.35169
[133] Sharma, B. L., On scattering of waves on square lattice half-plane with mixed boundary condition, Zeitschrift für angewandte Mathematik und Physik, 68, 120, (2017) · Zbl 1386.74070
[134] Sharma, B. L., Electronic transport across a junction between armchair graphene nanotube and zigzag nanoribbon: Transmission in an armchair nanotube without a zigzag half-line of dimers, The European Physical Journal B, 91, 1-25, (2018)
[135] Sharma, B. L., On prototypical wave transmission across a junction of waveguides with honeycomb structure, Zeitschrift für angewandte Mathematik und Physik, 69, 1-27, (2018) · Zbl 1390.74098
[136] Sharma, B. L., On electronic conductance of partially unzipped armchair nanotubes: further analysis, The European Physical Journal B, 92, 1, (2019) · Zbl 1515.82207
[137] Sharma, B. L., Wiener-Hopf factorisation on unit circle: some examples from discrete scattering, (2019), arXiv preprint arXiv:1912.05797
[138] Sharma, B. L., Discrete scattering by two staggered semi-infinite defects: reduction of matrix Wiener-Hopf problem, Journal of Engineering Mathematics, 123, 1, 41-87, (2020) · Zbl 1453.74047
[139] Sharma, B. L., Transmission of waves across atomic step discontinuities in discrete nanoribbon structures, Zeitschrift für angewandte Mathematik und Physik, 71, 2, 73, (2020) · Zbl 1447.78009
[140] Sharma, B. L., A dislocation-dipole in one-dimensional lattice model, Philosophical Magazine, 101, 20, 2216-2259, (2021)
[141] Sharma, B. L., Surface wave across crack-tip in a lattice model, Philosophical Transactions of the Royal Society of London A (Mathematical and Physical Sciences), 380, Article 20210396 pp., (2022)
[142] Sharma, B. L., Scattering of surface waves by inhomogeneities in crystalline structures, (2023), arXiv preprint arXiv:2309.08552
[143] Sharma, B. L., Discrete scattering of in-plane waves by a semi-infinite crack in triangular lattice, manuscript under processing, (2024)
[144] Sharma, B. L.; Eremeyev, V. A., Wave transmission across surface interfaces in lattice structures, International Journal of Engineering Science, 145, Article 103173 pp., (2019) · Zbl 1476.74078
[145] Sharma, B. L.; Maurya, G., Discrete scattering by a pair of parallel defects, Philosophical Transactions of the Royal Society, Series A, 378, 2162, Article 20190102 pp., (2020) · Zbl 1462.74095
[146] Sharma, B. L.; Mishuris, G., Scattering on square lattice from crack with damage zone, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 476, Article 20190686 pp., (2020) · Zbl 1472.74122
[147] Sharma, B. L.; Vainchtein, A., Quasistatic propagation of steps along a phase boundary, Continuum Mechanics and Thermodynamics, 19, 347-377, (2007) · Zbl 1160.74397
[148] Sheng, P.; van Tiggelen, B., Introduction to wave scattering, (2007), Localization and Mesoscopic Phenomena
[149] Slepyan, L. I., Feeding and dissipative waves in fracture and phase transition. III. Triangular-cell lattice, Journal of Mathematical PhysicsS, 49, 12, 2839-2875, (2001) · Zbl 1140.74535
[150] Slepyan, L. I., Models and phenomena in fracture mechanics, foundations of engineering mechanics, (2002), Springer-Verlag · Zbl 1047.74001
[151] Slepyan, L. I.; Ayzenberg-Stepanenko, M., Resonant-frequency primitive waveforms and star waves in lattices, Journal of Sound and Vibration, 313, 812-821, (2008)
[152] Smith, M. J.A.; Peter, M. A.; Abrahams, I. D.; Meylan, M. H., On the Wiener-Hopf solution of water-wave interaction with a submerged elastic or poroelastic plate, Proceedings of the Royal Society of London, Series A (Mathematical and Physical Sciences), 476, Article 20200360 pp., (2020) · Zbl 1472.76019
[153] Sommerfeld, A., Mathematische Theorie der Diffraction, Mathematische Annalen, 47, 2-3, 317-374, (1896) · JFM 27.0706.03
[154] Suzuki, T., Numerical study of transverse lattice waves connected with martensitic transformation, Metallurgical Transactions A, 12, 709-714, (1981)
[155] Tallerico, D.; Movchan, N. V.; Movchan, A. B.; Colquitt, D. J., Tilted resonators in a triangular elastic lattice: Chirality, Bloch waves and negative refraction, Journal of Mathematical PhysicsS, 103, 236-256, (2017)
[156] Truskinovsky, L.; Vainchtein, A., Peierls-Nabarro landscape for martensitic phase transitions, Physical Review B, 67, 17, Article 172103 pp., (2003)
[157] Truskinovsky, L.; Vainchtein, A., Kinetics of martensitic phase transitions: lattice model, SIAM Journal on Applied Mathematics, 66, 2, 533-553, (2005) · Zbl 1136.74362
[158] Vinogradov, S. S.; Smith, P. D.; Vinogradova, E. D., Canonical problems in scattering and potential theory, (Monographs and surveys in pure and applied mathematics, (2002), Chapman & Hall/CRC) · Zbl 1009.76002
[159] Wang, C.; Balogun, O.; Achenbach, J. D., Scattering of a Rayleigh wave by a near surface crack which is normal to the free surface, International Journal of Engineering Sciences, 145, Article 103162 pp., (2019) · Zbl 1476.74084
[160] Wang, P.; Lu, L.; Bertoldi, K., Topological phononic crystals with one-way elastic edge waves, Physical Review Letters, 115, 10, Article 104302 pp., (2015)
[161] Wang, Y.; Ramirez, B.; Carpenter, K.; Naify, C.; Hofmann, D. C.; Daraio, C., Architected lattices with adaptive energy absorption, Extreme Mechanics Letters, 33, Article 100557 pp., (2019)
[162] Wilks, B.; Montiel, F.; Wakes, S., Rainbow reflection and broadband energy absorption of water waves by graded arrays of vertical barriers, Journal of Fluid Mechanics, 941, A26, (2022) · Zbl 1501.76014
[163] Yang, C.; Achenbach, J. D., Time domain scattering of elastic waves by a cavity, represented by radiation from equivalent body forces, International Journal of Science, 115, 43-50, (2017) · Zbl 1423.74445
[164] Zhao, K.; Stead, D.; Kang, H.; Damjanac, B.; Donati, D.; Gao, F., Investigating the interaction of hydraulic fracture with pre-existing joints based on lattice spring modeling, Computers and Geotechnics, 122, Article 103534 pp., (2020)
[165] Zheludev, N. I.; Kivshar, Y. S., From metamaterials to metadevices, Nature Materials, 11, 11, 917-924, (2012)
[166] Zheng, L. Y.; Achilleos, V.; Richoux, O.; Theocharis, G.; Pagneux, V., Observation of edge waves in a two-dimensional Su-Schrieffer-Heeger acoustic network, Physical Review A, 12, 3, Article 034014 pp., (2019)
[167] Zhu, Z.; Deng, Z.; Huang, B.; Du, J., Elastic wave propagation in triangular chiral lattices: Geometric frustration behavior of standing wave modes, International Journal of Solids and Structures, 158, 40-51, (2019)
[168] Zhu, S. J.; Ooi, A.; Skvortsov, A.; Manasseh, R., Modelling underwater noise mitigation of a bubble curtain using a coupled-oscillator model, Journal of Sound and Vibration, 567, Article 117903 pp., (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.