×

A family of Andrews-Curtis trivializations via 4-manifold trisections. (English) Zbl 07813354

The Andrews-Curtis conjecture asserts that “any balanced presentation \(\langle x_1,\dots,x_n \mid r_1,\dots,r_n\rangle \) of the trivial group can be converted to the trivial presentation \(\langle x_1,\dots,x_n \mid x_1,\dots,x_n\rangle \) by a finite sequence of the following moves:
1. Replace a relator \(r_i\) by \(r_i^{-1}\)
2. Replace a relator \(r_i\) by \(r_ir_j\) where \(i \neq j\)
3. Replace a relator \(r_i\) by \(x_jr_ix_j^{-1}\)
4. Add or delete a trivial generator/relator pair \(x_{n+1}\) and \(r_{n+1} = x_{n+1}\)
A presentation \(P\) that admits such a trivialization is called AC-trivial. Although the conjecture remains open, there are interesting families of potential counterexamples, many arising from constructions in low-dimensional topology.”
“An R-link is an \(n\)-component link \(L\) in \(S^3\) such that Dehn surgery on \(L\) yields \(\#^n(S^1 \times S^2)\). Every R-link \(L\) gives rise to a geometrically simply-connected homotopy 4-sphere \(X_L\), which in turn can be used to produce a balanced presentation of the trivial group. Adapting work of Gompf, Scharlemann, and Thompson [R. E. Gompf et al., Geom. Topol. 14, No. 4, 2305–2347 (2010; Zbl 1214.57008)], J. Meier and A. Zupan [J. Differ. Geom. 122, No. 1, 69–129 (2022; Zbl 1521.57017)] produced a family of R-links \(L(p,q;c/d)\), where the pairs \((p,q)\) and \((c,d)\) are relatively prime and \(c\) is even. Within this family, \(L(3, 2; 2n/(2n + 1))\) induces the trivial group presentation \(\langle x, y \mid xyx = yxy, x^{n+1} = y^n\rangle \), a popular collection of potential counterexamples to the Andrews-Curtis conjecture for \(n \geq 3\).”
In this paper, the authors use 4-manifold trisections to show that the group presentations corresponding to a different subfamily, \(L(3,2;4/d)\), are Andrews-Curtis trivial for all \(d\).

MSC:

57K40 General topology of 4-manifolds
57R60 Homotopy spheres, Poincaré conjecture
20F05 Generators, relations, and presentations of groups
57M07 Topological methods in group theory

References:

[1] Akbulut, S.; Kirby, R., A potential smooth counterexample in dimension \(4\) to the Poincaré conjecture, the Schoenflies conjecture, and the Andrews-Curtis conjecture, Topology, 24, 4, 375-390, (1985) · Zbl 0584.57009 · doi:10.1016/0040-9383(85)90010-2
[2] Andrews, JJ; Curtis, ML, Free groups and handlebodies, Proc. Amer. Math. Soc., 16, 192-195, (1965) · Zbl 0131.38301 · doi:10.2307/2033843
[3] Burns, RG; Macedońska, O., Balanced presentations of the trivial group, Bull. Lond. Math. Soc., 25, 6, 513-526, (1993) · Zbl 0796.20022 · doi:10.1112/blms/25.6.513
[4] Farb, B.; Margalit, D., A Primer on Mapping Class Groups, Princeton Mathematical Series, (2012), Princeton: Princeton University Press, Princeton
[5] Fernández, X.: Morse Theory for Group Presentations. arXiv e-prints arXiv:1912.00115 (2019). doi:10.48550/arXiv.1912.00115
[6] Gay, D.; Kirby, R., Trisecting 4-manifolds, Geom. Topol., 20, 6, 3097-3132, (2016) · Zbl 1372.57033 · doi:10.2140/gt.2016.20.3097
[7] Gompf, RE, Killing the Akbulut-Kirby \(4\)-sphere, with relevance to the Andrews-Curtis and Schoenflies problems, Topology, 30, 1, 97-115, (1991) · Zbl 0715.57016 · doi:10.1016/0040-9383(91)90036-4
[8] Gompf, RE; Scharlemann, M.; Thompson, A., Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures, Geom. Topol., 14, 4, 2305-2347, (2010) · Zbl 1214.57008 · doi:10.2140/gt.2010.14.2305
[9] Gompf, R.E., Stipsicz, A.I.: \(4\)-manifolds and Kirby calculus. In: Graduate Studies in Mathematics, vol. 20. American Mathematical Society, Providence (1999). doi:10.1090/gsm/020. doi:10.1090/gsm/020 · Zbl 0933.57020
[10] Hoffman, H., Nakagawa, K., Potter, R., Zupan, A.: Knots in the fibers of generalized square knots. In preparation
[11] Meier, J.; Schirmer, T.; Zupan, A., Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc., 144, 11, 4983-4997, (2016) · Zbl 1381.57018 · doi:10.1090/proc/13105
[12] Meier, J., Zupan, A.: Presentations of the trivial group and generalized square knots. In preparation
[13] Meier, J.; Zupan, A., Bridge trisections of knotted surfaces in \(S^4\), Trans. Amer. Math. Soc., 369, 10, 7343-7386, (2017) · Zbl 1376.57025 · doi:10.1090/tran/6934
[14] Meier, J.; Zupan, A., Characterizing Dehn surgeries on links via trisections, Proc. Natl. Acad. Sci. USA, 115, 43, 10887-10893, (2018) · Zbl 1457.57028 · doi:10.1073/pnas.1717187115
[15] Meier, J.; Zupan, A., Generalized square knots and homotopy 4-spheres, J. Differ. Geom., 122, 1, 69-129, (2022) · Zbl 1521.57017 · doi:10.4310/jdg/1668186788
[16] Metzler, W.: Äquivalenzklassen von Gruppenbeschreibungen, Identitäten und einfacher Homotopietyp in niederen Dimensionen. In: Homological Group Theory (Proc. Sympos., Durham, 1977), London Math. Soc. Lecture Note Ser., vol. 36, pp. 291-326. Cambridge Univ. Press, Cambridge-New York (1979) · Zbl 0433.57003
[17] Metzler, W.: On the Andrews-Curtis conjecture and related problems. In: Combinatorial Methods in Topology and Algebraic Geometry (Rochester, N.Y., 1982), Contemp. Math., vol. 44, pp. 35-50. Amer. Math. Soc., Providence (1985). doi:10.1090/conm/044/813099. doi:10.1090/conm/044/813099 · Zbl 0579.57003
[18] Miasnikov, AD, Genetic algorithms and the Andrews-Curtis conjecture, Internat. J. Algebra Comput., 9, 6, 671-686, (1999) · Zbl 0949.20022 · doi:10.1142/S0218196799000370
[19] Myasnikov, A.D., Myasnikov, A.G., Shpilrain, V.: On the Andrews-Curtis equivalence. In: Combinatorial and Geometric Group Theory (New York, 2000/Hoboken, NJ, 2001), Contemp. Math., vol. 296, pp. 183-198. Amer. Math. Soc., Providence (2002). doi:10.1090/conm/296/05074. doi:10.1090/conm/296/05074 · Zbl 1010.20019
[20] Panteleev, D.; Ushakov, A., Conjugacy search problem and the Andrews-Curtis conjecture, Groups Complex. Cryptol., 11, 1, 43-60, (2019) · Zbl 1515.20151 · doi:10.1515/gcc-2019-2005
[21] Scharlemann, M., Proposed property 2R counterexamples examined, Illinois J. Math., 60, 1, 207-250, (2016) · Zbl 1376.57012 · doi:10.1215/ijm/1498032031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.