×

Virasoro constraints for moduli of sheaves and vertex algebras. (English) Zbl 07813242

This important paper proves Virasoro constraints for the moduli spaces of (1) slope semistable bundles on smooth projective curves, (2) slope or Gieseker semistable torsion-free sheaves on smooth projective surfaces \(S\) with \(h^{1,0}(S)=h^{2,0}(S)=0\), and (3) slope semistable one-dimensional sheaves on smooth projective surfaces with \(h^{1,0}(S)=h^{2,0}(S)=0\) under some assumption on wall-crossing formulas (Theorem A). The important point is the method of the proof: The sheaf theoretic Virasoro constraint is rephrased in terms of primary states for a natural conformal vector in Joyce’s vertex algebra (Theorem B). This implies that the Virasoro constraints are preserved under wall-crossing (Theorem C), and the cases (1)–(3) can be reduced to the rank one case.
As reviewed in §1.4 and §4 of this paper, Joyce’s vertex algebra was introduced to study the wall-crossing of (higher) moduli stacks \(\mathcal{M}_X\) of semistable objects in the derived category of sheaves on a smooth projective variety \(X\). Joyce introduced a vertex algebra structure on the homology of \(\mathcal{M}_X\) (with shifted grading) in the Ringel-Hall style: The vertex operators \(Y(-,z)\) is defined in terms of the map \(\Sigma\colon \mathcal{M}_X \times \mathcal{M}_X \to \mathcal{M}_X\) taking direct sums and a perfect complex \(\Theta = \mathrm{Ext}^\vee \oplus \sigma^*\mathrm{Ext}\) on \(\mathcal{M}_X \times \mathcal{M}_X\) (see §4.1 for the detail). As explained in §4.2, Joyce’s vertex algebra considered in this paper is isomorphic to a lattice vertex algebra associated to the \(\mathbb{Z}/2\mathbb{Z}\)-graded vector space \(\Lambda = K^0(X) \oplus K^1 (X)\) and the Euler paring. The standard construction gives a conformal vector of the vertex algebra, and it is shown in §4.4 (proof of Theorem 1.9) that the Virasoro constraint is equivalent to that the virtual fundamental class of the moduli is a primary state in the vertex algebra.
The rank reduction mentioned above is executed in §5 via wall-crossing, In each of the 3 cases, the paper considers the moduli spaces of Bradlow pairs depending on a stability parameter \(t>0\). In the small range of \(t\) the Bradlow moduli is a projective bundle over the original moduli, and in the large range the Bradlow moduli is easier to understand. The point is that the Bradlow moduli also satisfy the pair analogue of the Virasoro constraint (Theorem 1.11, proved in §5 and §6), by which one can reduce the rank.

MSC:

14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
14H60 Vector bundles on curves and their moduli
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
17B68 Virasoro and related algebras
17B69 Vertex operators; vertex operator algebras and related structures

References:

[1] Abe, T., A \({\mathbb{Z}}_2 \)-orbifold model of the symplectic fermionic vertex operator superalgebra, Math. Z., 255, 4, 755-792, 2007 · Zbl 1188.17019
[2] Antieau, B.; Heller, J., Some remarks on topological \(K\)-theory of dg categories, Proc. Am. Math. Soc., 146, 10, 4211-4219, 2018 · Zbl 1394.14014
[3] Abramovich, D.; Olsson, M.; Vistoli, A., Tame stacks in positive characteristic, Ann. Inst. Fourier, 58, 4, 1057-1091, 2008 · Zbl 1222.14004
[4] Behrend, K.; Fantechi, B., The intrinsic normal cone, Invent. Math., 128, 1, 45-88, 1997 · Zbl 0909.14006
[5] Belavin, A. A.; Polyakov, A. M.; Zamolodchikov, A. B., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B, 241, 333-380, 1984 · Zbl 0661.17013
[6] Blanc, A., Topological \(K\)-theory of complex noncommutative spaces, Compos. Math., 152, 3, 489-555, 2016 · Zbl 1343.14003
[7] Bojko, A.: Wall-crossing for punctual Quot-schemes (2021). https://arxiv.org/abs/2111.11102
[8] Bojko, A.: Wall-crossing for zero-dimensional sheaves and Hilbert schemes of points on Calabi-Yau 4-folds (2021). https://arxiv.org/abs/2102.01056
[9] Bojko, A.: Universal Virasoro Constraints for Quivers with Relations (2023). https://arxiv.org/abs/2310.18311
[10] Borcherds, R. E., Vertex algebras, Kac-Moody algebras, and the monster, Proc. Natl. Acad. Sci., 83, 10, 3068-3071, 1986 · Zbl 0613.17012
[11] Bu, C., Counting sheaves on curves, Adv. Math., 434, 109334-109387, 2023 · Zbl 1542.14029
[12] Dold, A., Lectures on Algebraic Topology, 377, 1980, Berlin: Springer, Berlin · Zbl 0872.55001
[13] Donaldson, S. K., An application of gauge theory to four-dimensional topology, J. Differ. Geom., 18, 2, 279-315, 1983 · Zbl 0507.57010
[14] Ellingsrud, G.; Göttsche, L.; Lehn, M., On the cobordism class of the Hilbert scheme of a surface, J. Algebraic Geom., 10, 1, 81-100, 2001 · Zbl 0976.14002
[15] Eguchi, T.; Hori, K.; Xiong, C.-S., Quantum cohomology and Virasoro algebra, Phys. Lett. B, 402, 1-2, 71-80, 1997 · Zbl 0933.81050
[16] Friedlander, E. M.; Walker, M. E., Semi-topological \(K\)-theory, Handbook of \(K\)-Theory, 877-924, 2005, Berlin: Springer, Berlin · Zbl 1115.19001
[17] Getzler, E., The Virasoro conjecture for Gromov-Witten invariants, Algebraic Geometry: Hirzebruch 70, 147-176, 1999, Providence: Am. Math. Soc., Providence · Zbl 0953.14034
[18] Gholampour, A.; Sheshmani, A.; Yau, S.-T., Nested Hilbert schemes on surfaces: virtual fundamental class, Adv. Math., 365, 107046-107050, 2020 · Zbl 1437.14054
[19] Givental, A.B.: Gromov-Witten invariants and quantization of quadratic Hamiltonians, vol. 1. (2001). Dedicated to the memory of I. G. Petrovskii on the occasion of his 100th anniversary. doi:10.17323/1609-4514-2001-1-4-551-568
[20] Gross, J.: The homology of moduli stacks of complexes (2019). https://arxiv.org/abs/1907.03269
[21] Gross, J.; Joyce, D.; Tanaka, Y., Universal structures in ℂ-Linear enumerative invariant theories, SIGMA, 18, 2022 · Zbl 1505.14026
[22] Huybrechts, D., Fourier-Mukai Transforms in Algebraic Geometry, 307, 2006, Oxford: The Clarendon Press, Oxford University Press, Oxford · Zbl 1095.14002
[23] Huybrechts, D.; Thomas, R. P., Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., 346, 3, 545-569, 2010 · Zbl 1186.14014
[24] Huybrechts, D.; Lehn, M., The Geometry of Moduli Spaces of Sheaves. Aspects of Mathematics, E31, 269, 1997, Braunschweig: Friedr. Vieweg & Sohn, Braunschweig · Zbl 0872.14002
[25] Johnson, D.; Oprea, D.; Pandharipande, R., Rationality of descendent series for Hilbert and Quot schemes of surfaces, Sel. Math. New Ser., 27, 2, 23-52, 2021 · Zbl 1461.14008
[26] Joyce, D.: Ringel-Hall style Lie algebra structures on the homology of moduli spaces (2019). Available on the author’s personal webpage, accessed in December 2023. https://people.maths.ox.ac.uk/joyce/hall.pdf
[27] Joyce, D., Configurations in Abelian categories. I. Basic properties and moduli stacks, Adv. Math., 203, 1, 194-255, 2006 · Zbl 1102.14009
[28] Joyce, D., Configurations in Abelian categories. II. Ringel-Hall algebras, Adv. Math., 210, 2, 635-706, 2007 · Zbl 1119.14005
[29] Joyce, D., Configurations in Abelian categories. III. Stability conditions and identities, Adv. Math., 215, 1, 153-219, 2007 · Zbl 1134.14007
[30] Joyce, D., Configurations in Abelian categories. IV. Invariants and changing stability conditions, Adv. Math., 217, 1, 125-204, 2008 · Zbl 1134.14008
[31] Joyce, D.: Enumerative invariants and wall-crossing formulae in Abelian categories (2021). https://arxiv.org/abs/2111.04694
[32] Joyce, D.; Song, Y., A theory of generalized Donaldson-Thomas invariants, Mem. Am. Math. Soc., 217, 1020, 199, 2012 · Zbl 1259.14054
[33] Kac, V., Vertex Algebras for Beginners, 201, 1998, Providence: Am. Math. Soc., Providence · Zbl 0924.17023
[34] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1, 1-23, 1992 · Zbl 0756.35081
[35] Kontsevich, M., Soibelman, Y.: Stability structures, motivic Donaldson-Thomas invariants and cluster transformations (2008). https://arxiv.org/abs/0811.2435 · Zbl 1248.14060
[36] Kotschick, D.; Morgan, J. W., \({\rm SO}(3)\)-invariants for 4-manifolds with \(b^+_2=1\). II, J. Differ. Geom., 39, 2, 433-456, 1994 · Zbl 0828.57013
[37] Lepowsky, J.; Li, H., Introduction to Vertex Operator Algebras and Their Representations, 2004, Basel: Birkhäuser, Basel · Zbl 1055.17001
[38] Lin, Y., Moduli spaces of stable pairs, Pac. J. Math., 294, 1, 123-158, 2018 · Zbl 1405.14034
[39] Liu, H.: Equivariant \(K\)-theoretic enumerative invariants and wall-crossing formulae in Abelian categories (2022). https://arxiv.org/abs/2207.13546
[40] Le Potier, J., Systèmes cohérents et structures de niveau, Astérisque, 214, 143, 1993 · Zbl 0881.14008
[41] Manolache, C., Virtual pull-backs, J. Algebraic Geom., 21, 2, 201-245, 2012 · Zbl 1328.14019
[42] Marian, A.; Oprea, D.; Pandharipande, R., Segre classes and Hilbert schemes of points, Ann. Sci. Éc. Norm. Supér. (4), 50, 1, 239-267, 2017 · Zbl 1453.14016
[43] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math., 142, 5, 1263-1285, 2006 · Zbl 1108.14046
[44] Maulik, D.; Nekrasov, N.; Okounkov, A.; Pandharipande, R., Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math., 142, 5, 1286-1304, 2006 · Zbl 1108.14047
[45] Mirzakhani, M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167, 1, 179-222, 2007 · Zbl 1125.30039
[46] Mochizuki, T., Donaldson Type Invariants for Algebraic Surfaces, 383, 2009, Berlin: Springer, Berlin · Zbl 1177.14003
[47] Moreira, M., Virasoro conjecture for the stable pairs descendent theory of simply connected 3-folds (with applications to the Hilbert scheme of points of a surface), J. Lond. Math. Soc. (2), 106, 1, 154-191, 2022 · Zbl 1523.14094
[48] Moreira, M.; Oblomkov, A.; Okounkov, A.; Pandharipande, R., Virasoro constraints for stable pairs on toric threefolds, Forum Math. Pi, 10, 20, 2022 · Zbl 1505.14115
[49] Newstead, P. E., Characteristic classes of stable bundles of rank 2 over an algebraic curve, Trans. Am. Math. Soc., 169, 337-345, 1972 · Zbl 0256.14008
[50] Oh, J.; Thomas, R. P., Counting sheaves on Calabi-Yau 4-folds, I, Duke Math. J., 172, 7, 1333-1409, 2023 · Zbl 1525.14052
[51] Okounkov, A.; Pandharipande, R., Virasoro constraints for target curves, Invent. Math., 163, 1, 47-108, 2006 · Zbl 1140.14047
[52] Okounkov, A.; Pandharipande, R., Gromov-Witten theory, Hurwitz numbers, and matrix models, Algebraic Geometry—Seattle 2005. Part 1, 325-414, 2005, Providence: Am. Math. Soc., Providence · Zbl 1205.14072
[53] Pandharipande, R.; Thomas, R. P., Curve counting via stable pairs in the derived category, Invent. Math., 178, 2, 407-447, 2009 · Zbl 1204.14026
[54] Pandharipande, R., Descendents for stable pairs on 3-folds, Modern Geometry: A Celebration of the Work of Simon Donaldson, 251-287, 2018, Providence: Am. Math. Soc., Providence · Zbl 1452.14059
[55] Park, H., Virtual Pullbacks in Donaldson-Thomas Theory of Calabi-Yau 4-Folds, 2021
[56] Pi, W.; Shen, J., Generators for the cohomology ring of the moduli of one-dimensional sheaves on \(\mathbb{P}^2 \), Algebr. Geom., 10, 4, 504-520, 2023 · Zbl 1528.14016
[57] Schürg, T.; Toën, B.; Vezzosi, G., Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes, J. Reine Angew. Math., 702, 1-40, 2015 · Zbl 1320.14033
[58] Siebert, B., Virtual fundamental classes, global normal cones and Fulton’s canonical classes, Frobenius Manifolds. Aspects Math., 341-358, 2004, Wiesbaden: Friedr. Vieweg, Wiesbaden · Zbl 1083.14066
[59] Stark, S.: On the Quot scheme \(\text{Quot}^l(\mathscr{E}) (2021)\). https://arxiv.org/abs/2107.03991
[60] Teleman, C., The structure of 2D semi-simple field theories, Invent. Math., 188, 3, 525-588, 2012 · Zbl 1248.53074
[61] Thaddeus, M., Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differ. Geom., 35, 1, 131-149, 1992 · Zbl 0772.53013
[62] Toën, B.; Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. Éc. Norm. Supér. (4), 40, 3, 387-444, 2007 · Zbl 1140.18005
[63] van Bree, D., Virasoro constraints for moduli spaces of sheaves on surfaces, Forum Math. Sigma, 11, 4-35, 2023 · Zbl 1510.14043
[64] Witten, E., Two-dimensional gravity and intersection theory on moduli space, Surveys in Differential Geometry (Cambridge, MA, 1990), 243-310, 1991, Bethlehem: Lehigh Univ., Bethlehem · Zbl 0757.53049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.