×

A discrete framework for the interpolation of Banach spaces. (English) Zbl 07811947

The authors develop a discrete framework for interpolation of Banach spaces which contain most of the well-known methods of interpolation such as the real interpolation method introduced by J. L. Lions and J. Peetre [Publ. Math., Inst. Hautes Étud. Sci. 19, 5–68 (1964; Zbl 0148.11403)] and complex interpolation method introduced by A. P. Calderón [Stud. Math. 24, 113–190 (1964; Zbl 0204.13703)]. Also some others such as the Rademacher interpolation method [N. Kalton et al., Math. Ann. 336, No. 4, 747–801 (2006; Zbl 1111.47020)], \(\gamma\)-interpolation method [J. Suárez and L. Weis, Lond. Math. Soc. Lect. Note Ser. 337, 293–306 (2006; Zbl 1127.46014)] and \(\ell^q\)-interpolation method [P. C. Kunstmann, Ill. J. Math. 59, No. 1, 1–19 (2015; Zbl 1346.46018)].
The starting point is the discrete mean method of real interpolation of Lions and Peetre. Recall that given a compatible pair of Banach spaces \((X_0,X_1)\) and a parameter \(0<\theta<1\) the real interpolation space \((X_0,X_1)_{\theta,p_0,p_1}\) is the space of elements \(x\in X_0+X_1\) such that \[\|x\|_{(X_0,X_1)_{\theta,p_0,p_1}}= \inf \max_{j=0,1}\|(e^{k(j-\theta)}x_k)_{k\in \mathbb Z}\|_{\ell^{p_j}(\mathbb Z, X_j)}<\infty\] where the infimum is taken over all sequences \((x_k)\in X_0\cap X_1\) such that \(\sum_{k\in \mathbb Z} x_k=x\). In the paper, the authors replace the spaces \(\ell^{p_j}(\mathbb Z, X_j)\) by sequence structures on the spaces \(X_j\). A sequence structure \(\mathfrak G\) on a space \(X\) is a translation invariant Banach space of \(X\)-valued sequences such that \(\ell^1(\mathbb Z, X)\subset \mathfrak G\subset \ell^\infty(\mathbb Z, X)\) contractively. Now given \(0<\theta<1\) and sequence structures \(\mathfrak G_j\) on \(X_j\) for \(j=0,1\), writing \(\mathcal X_j=[X_j,\mathfrak G_j]\), the authors introduce the norm \[\|x\|_{(\mathcal X_0,\mathcal X_1)_\theta}= \inf \max_{j=0,1}\|(e^{k(j-\theta)}x_k)_{k\in \mathbb Z}\|_{\mathfrak G_j}<\infty\] where the infimum is taken over all sequences \((x_k)\in X_0\cap X_1\) such that \(\sum_{k\in \mathbb Z} x_k=x\). For specific choices of \(\mathfrak G_j\) the procedure includes many known interpolation methods: the real interpolation method (using \(\ell^{p_j }(\mathbb Z, X_j)\)), the lower and upper complex interpolation method (using the space of Fourier coefficients of functions in \(C(\mathbb T,X_j)\) and measures in \(\Lambda^\infty(\mathbb T,X_j)\) respectively), the Rademacher and \(\gamma\)-interpolation methods (using certain random sequence spaces), the \(\ell^q\)-interpolation method (using \(X_j(\ell^q(\mathbb Z))\)) and others. This approach enables the authors to extend some previously known results for either real or complex interpolation methods to all interpolation methods that fit in their framework. As applications, they prove some interpolation results for analytic operator families or for intersections of spaces.

MSC:

46B70 Interpolation between normed linear spaces
46M35 Abstract interpolation of topological vector spaces

References:

[1] Auscher, P.; Hofmann, S.; Lacey, M.; McIntosh, A.; Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\), Ann. Math. (2), 156, 2, 633-654, (2002) · Zbl 1128.35316
[2] Asekritova, I.; Kruglyak, N.; Mastyło, M., Stability of the inverses of interpolated operators with application to the Stokes system, Rev. Mat. Complut., 36, 1, 163-206, (2023) · Zbl 1517.46018
[3] Agresti, A.; Veraar, M., Nonlinear parabolic stochastic evolution equations in critical spaces part I. Stochastic maximal regularity and local existence, Nonlinearity, 35, 8, 4100-4210, (2022) · Zbl 1496.60068
[4] Agresti, A.; Veraar, M., Nonlinear parabolic stochastic evolution equations in critical spaces part II: blow-up criteria and instantaneous regularization, J. Evol. Equ., 22, 2, Article 56 pp., (2022) · Zbl 1491.60093
[5] Bagdasaryan, A. G., Some problems on the commutativity of interpolation functors, Izv. Nats. Akad. Nauk Armenii Mat., 48, 3, 3-24, (2013) · Zbl 1290.46064
[6] Barraza Martínez, B.; González Ospino, J.; Hernández Monzón, J., Vector-Valued Function and Distribution Spaces on the Torus, (2019), Editorial Universidad del Norte
[7] Brudnyĭ, Yu. A.; Krugljak, N. Ya., Interpolation Functors and Interpolation Spaces. Vol. I, North-Holland Mathematical Library, vol. 47, (1991), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam · Zbl 0743.46082
[8] Bergh, J.; Löfström, J., Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, (1976), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0344.46071
[9] Bennett, C.; Sharpley, R., Interpolation of Operators, Pure and Applied Mathematics, vol. 129, (1988), Academic Press, Inc.: Academic Press, Inc. Boston, MA · Zbl 0647.46057
[10] Calderón, A. P., Intermediate spaces and interpolation, the complex method, Stud. Math., 24, 113-190, (1964) · Zbl 0204.13703
[11] Cowling, M.; Doust, I.; McIntosh, A.; Yagi, A., Banach space operators with a bounded \(H^\infty\) functional calculus, J. Aust. Math. Soc. Ser. A, 60, 1, 51-89, (1996) · Zbl 0853.47010
[12] Cwikel, M.; Janson, S., Interpolation of analytic families of operators, Stud. Math., 79, 1, 61-71, (1984) · Zbl 0556.46041
[13] Cwikel, M.; Jawerth, B.; Milman, M.; Rochberg, R., Differential estimates and commutators in interpolation theory, (Analysis at Urbana, Vol. II. Analysis at Urbana, Vol. II, Urbana, IL, 1986-1987. Analysis at Urbana, Vol. II. Analysis at Urbana, Vol. II, Urbana, IL, 1986-1987, London Math. Soc. Lecture Note Ser., vol. 138, (1989), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 170-220 · Zbl 0696.46050
[14] Cwikel, M.; Kalton, N. J., Interpolation of compact operators by the methods of Calderón and Gustavsson-Peetre, Proc. Edinb. Math. Soc. (2), 38, 2, 261-276, (1995) · Zbl 0821.46090
[15] Chill, R.; Król, S., Real interpolation with weighted rearrangement invariant Banach function spaces, J. Evol. Equ., 17, 1, 173-195, (2017) · Zbl 1457.46024
[16] Cwikel, M.; Kalton, N.; Milman, M.; Rochberg, R., A unified theory of commutator estimates for a class of interpolation methods, Adv. Math., 169, 2, 241-312, (2002) · Zbl 1022.46017
[17] Cobos, F.; Kühn, T.; Schonbek, T., One-sided compactness results for Aronszajn-Gagliardo functors, J. Funct. Anal., 106, 2, 274-313, (1992) · Zbl 0787.46061
[18] Conway, J. B., A Course in Functional Analysis, Graduate Texts in Mathematics, vol. 96, (1990), Springer-Verlag: Springer-Verlag New York · Zbl 0706.46003
[19] Cwikel, M.; Sagher, Y., Analytic families of operators on some quasi-Banach spaces, Proc. Am. Math. Soc., 102, 4, 979-984, (1988) · Zbl 0658.46058
[20] Cwikel, M., Complex interpolation spaces, a discrete definition and reiteration, Indiana Univ. Math. J., 27, 6, 1005-1009, (1978) · Zbl 0409.46067
[21] Cwikel, M., Real and complex interpolation and extrapolation of compact operators, Duke Math. J., 65, 2, 333-343, (1992) · Zbl 0787.46062
[22] Denk, R.; Hieber, M.; Prüss, J., Optimal \(L^p- L^q\)-estimates for parabolic boundary value problems with inhomogeneous data, Math. Z., 257, 1, 193-224, (2007) · Zbl 1210.35066
[23] Duistermaat, J. J.; Kolk, J. A.C., Distributions. Cornerstones, (2010), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 1213.46001
[24] Escher, J.; Prüss, J.; Simonett, G., Analytic solutions for a Stefan problem with Gibbs-Thomson correction, J. Reine Angew. Math., 563, 1-52, (2003) · Zbl 1242.35220
[25] Garcia-Cuerva, J.; Kazarian, K. S.; Kolyada, V. I.; Torrea, J. L., The Hausdorff-Young inequality with vector-valued coefficients and applications, Usp. Mat. Nauk, 53, 3(321), 3-84, (1998) · Zbl 0923.46017
[26] Grafakos, L., Classical Fourier Analysis, Graduate Texts in Mathematics, vol. 249, (2014), Springer: Springer New York · Zbl 1304.42001
[27] Grisvard, P., Interpolation non commutative, Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Nat., 8, 52, 11-15, (1972) · Zbl 0247.46053
[28] Grisvard, P., Spazi di tracce e applicazioni, Rend. Mat., 6, 5, 657-729, (1972) · Zbl 0272.46025
[29] Haase, M. H.A., Identification of some real interpolation spaces, Proc. Am. Math. Soc., 134, 8, 2349-2358, (2006) · Zbl 1100.46013
[30] Hummel, F.; Lindemulder, N., Elliptic and parabolic boundary value problems in weighted function spaces, Potential Anal., (2021)
[31] Hytönen, T. P.; van Neerven, J. M.A. M.; Veraar, M. C.; Weis, L., Analysis in Banach Spaces. Vol. I. Martingales and Littlewood-Paley Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 63, (2016), Springer: Springer Cham · Zbl 1366.46001
[32] Hytönen, T. P.; van Neerven, J. M.A. M.; Veraar, M. C.; Weis, L., Analysis in Banach Spaces. Vol. II. Probabilistic Methods and Operator Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete., vol. 67, (2017), Springer: Springer Cham · Zbl 1402.46002
[33] Hytönen, T. P.; van Neerven, J. M.A. M.; Veraar, M. C.; Weis, L., Analysis in Banach Spaces. Volume III: Harmonic Analysis and Spectral Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete., vol. 76, (2023), Springer · Zbl 1534.46003
[34] Ivtsan, A., Stafney’s lemma holds for several “classical” interpolation methods, Proc. Am. Math. Soc., 140, 3, 881-889, (2012) · Zbl 1251.46010
[35] Janson, S., Minimal and maximal methods of interpolation, J. Funct. Anal., 44, 1, 50-73, (1981) · Zbl 0492.46059
[36] Janson, S.; Nilsson, P.; Peetre, J., Notes on Wolff’s note on interpolation spaces, Proc. Lond. Math. Soc. (3), 48, 2, 283-299, (1984), With an appendix by Misha Zafran · Zbl 0532.46046
[37] Kalton, N. J., Nigel J. Kalton Selecta. Vol. 2, Contemporary Mathematicians, (2016), Birkhäuser/Springer: Birkhäuser/Springer Cham · Zbl 1347.01021
[38] Kalton, N.; Kunstmann, P. C.; Weis, L., Perturbation and interpolation theorems for the \(H^\infty \)-calculus with applications to differential operators, Math. Ann., 336, 4, 747-801, (2006) · Zbl 1111.47020
[39] Kalton, N. J.; Lorist, E.; Weis, L., Euclidean structures and operator theory in Banach spaces, Mem. Am. Math. Soc., 288, 1433, (2023), vi+156 · Zbl 1533.47004
[40] Kunstmann, P. C.; Ullmann, A., \( \mathcal{R}_s\)-sectorial operators and generalized Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 20, 1, 135-185, (2014) · Zbl 1316.46036
[41] Kunstmann, P. C., A new interpolation approach to spaces of Triebel-Lizorkin type, Ill. J. Math., 59, 1, 1-19, (2015) · Zbl 1346.46018
[42] Kunstmann, P. C.; Weis, L., New criteria for the \(H^\infty \)-calculus and the Stokes operator on bounded Lipschitz domains, J. Evol. Equ., 17, 1, 387-409, (2017) · Zbl 1396.42003
[43] Lindemulder, N., Maximal regularity with weights for parabolic problems with inhomogeneous boundary conditions, J. Evol. Equ., 20, 1, 59-108, (2020) · Zbl 1439.35228
[44] Lindemulder, N., An intersection representation for a class of anisotropic vector-valued function spaces, J. Approx. Theory, 264, Article 105519 pp., (2021) · Zbl 1467.46037
[45] Lindemulder, N.; Lorist, E., Stein interpolation for the real interpolation method, Banach J. Math. Anal., 16, 1, Article 7 pp., (2022) · Zbl 1490.46020
[46] Lorist, E.; Nieraeth, Z., Banach function spaces done right, Ned. Akad. Wet. Indag. Math., (2023), Online First
[47] Lozanovskii, G. Ya., On some Banach lattices, Sib. Math. J., 10, 3, 419-431, (1969) · Zbl 0194.43302
[48] Lions, J.-L.; Peetre, J., Sur une classe d’espaces d’interpolation, Inst. Hautes Études Sci. Publ. Math., 19, 1, 5-68, (1964) · Zbl 0148.11403
[49] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete., vol. 97, (1979), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0403.46022
[50] Lindemulder, N.; Veraar, M. C., The heat equation with rough boundary conditions and holomorphic functional calculus, J. Differ. Equ., 269, 7, 5832-5899, (2020) · Zbl 1448.35283
[51] Maligranda, L., The K-functional for symmetric spaces, (Interpolation Spaces and Allied Topics in Analysis. Interpolation Spaces and Allied Topics in Analysis, Lund, 1983. Interpolation Spaces and Allied Topics in Analysis. Interpolation Spaces and Allied Topics in Analysis, Lund, 1983, Lecture Notes in Math., vol. 1070, (1984), Springer: Springer Berlin), 169-182 · Zbl 0573.46045
[52] Maligranda, L., Interpolation between sum and intersection of Banach spaces, J. Approx. Theory, 47, 1, 42-53, (1986) · Zbl 0636.46063
[53] McIntosh, A., Operators which have an \(H_\infty\) functional calculus, (Miniconference on Operator Theory and Partial Differential Equations. Miniconference on Operator Theory and Partial Differential Equations, North Ryde, 1986. Miniconference on Operator Theory and Partial Differential Equations. Miniconference on Operator Theory and Partial Differential Equations, North Ryde, 1986, Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, (1986), Austral. Nat: Austral. Nat Univ., Canberra), 210-231 · Zbl 0634.47016
[54] Meyer-Nieberg, P., Banach Lattices, Universitext, (1991), Springer-Verlag: Springer-Verlag Berlin · Zbl 0743.46015
[55] Nilsson, P., Reiteration theorems for real interpolation and approximation spaces, Ann. Mat. Pura Appl. (4), 132, 291-330, (1983), 1982 · Zbl 0514.46049
[56] Ovchinnikov, V. I., The method of orbits in interpolation theory, Math. Rep., 1, 2, (1984), i-x and 349-515 · Zbl 0875.46007
[57] Peetre, J., Sur la transformation de Fourier des fonctions à valeurs vectorielles, Rend. Semin. Mat. Univ. Padova, 42, 15-26, (1969) · Zbl 0241.46033
[58] Peetre, J., Sur l’utilisation des suites inconditionellement sommables dans la théorie des espaces d’interpolation, Rend. Semin. Mat. Univ. Padova, 46, 173-190, (1971) · Zbl 0233.46047
[59] Peetre, J., Über den Durchschnitt von Interpolationsräumen, Arch. Math. (Basel), 25, 511-513, (1974) · Zbl 0293.46025
[60] Pisier, G., Martingales in Banach Spaces, Cambridge Studies in Advanced Mathematics, vol. 155, (2016), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1382.46002
[61] Prüss, J.; Simonett, G., Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathematics, vol. 105, (2016), Birkhhäuser/Springer: Birkhhäuser/Springer Cham · Zbl 1435.35004
[62] Prüss, J.; Simonett, G.; Wilke, M., Critical spaces for quasilinear parabolic evolution equations and applications, J. Differ. Equ., 264, 3, 2028-2074, (2018) · Zbl 1377.35176
[63] Prüss, J.; Wilke, M., On critical spaces for the Navier-Stokes equations, J. Math. Fluid Mech., 20, 2, 733-755, (2018) · Zbl 1458.76026
[64] Šneĭberg, I. Ja., The solvability of linear equations in interpolational families of Banach spaces, Dokl. Akad. Nauk SSSR, 212, 57-59, (1973)
[65] Stein, E. M., Interpolation of linear operators, Trans. Am. Math. Soc., 83, 482-492, (1956) · Zbl 0072.32402
[66] Suárez, J.; Weis, L., Interpolation of Banach spaces by the γ-method, (Methods in Banach Space Theory. Methods in Banach Space Theory, London Math. Soc. Lecture Note Ser., vol. 337, (2006), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 293-306 · Zbl 1127.46014
[67] Suárez, J.; Weis, L., Addendum to “Interpolation of Banach spaces by the γ-method” [MR2326391], Extr. Math., 24, 3, 265-269, (2009) · Zbl 1203.46013
[68] Trèves, F., Topological Vector Spaces, Distributions and Kernels, (2006), Dover Publications, Inc.: Dover Publications, Inc. Mineola, NY, Unabridged republication of the 1967 original · Zbl 1111.46001
[69] Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library, vol. 18, (1978), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-New York · Zbl 0387.46033
[70] Voigt, J., Abstract Stein interpolation, Math. Nachr., 157, 197-199, (1992) · Zbl 0784.46059
[71] Weidemaier, P., Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed \(L_p\)-norm, Electron. Res. Announc. Am. Math. Soc., 8, 47-51, (2002) · Zbl 1015.35036
[72] Weis, L., The \(H^\infty\) holomorphic functional calculus for sectorial operators—a survey, (Partial Differential Equations and Functional Analysis. Partial Differential Equations and Functional Analysis, Oper. Theory Adv. Appl., vol. 168, (2006), Birkhäuser: Birkhäuser Basel), 263-294 · Zbl 1117.47031
[73] Williams, V., Generalized interpolation spaces, Trans. Am. Math. Soc., 156, 309-334, (1971) · Zbl 0213.13002
[74] Wolff, T. H., A note on interpolation spaces, (Harmonic Analysis. Harmonic Analysis, Minneapolis, Minn., 1981. Harmonic Analysis. Harmonic Analysis, Minneapolis, Minn., 1981, Lecture Notes in Math., vol. 908, (1982), Springer: Springer Berlin-New York), 199-204 · Zbl 0517.46054
[75] Zaanen, A. C., Integration, (1967), North-Holland Publishing Co., Interscience Publishers John Wiley & Sons, Inc.: North-Holland Publishing Co., Interscience Publishers John Wiley & Sons, Inc. Amsterdam, New York, Completely revised edition of an introduction to the theory of integration · Zbl 0175.05002
[76] Zafran, M., Spectral theory and interpolation of operators, J. Funct. Anal., 36, 2, 185-204, (1980) · Zbl 0429.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.