×

Numerical simulation of the time-fractional Fokker-Planck equation and applications to polymeric fluids. (English) Zbl 07811300

Summary: We introduce a new approach to the numerical approximation of the time-fractional Navier-Stokes-Fokker-Planck (TFNSFP) system, which involves the coupling of the incompressible Navier-Stokes equations to a time-fractional Fokker-Planck equation. The model arises in the context of dilute polymeric fluids, and it enhances the standard integer-derivative version of the model by including memory effects. The key challenge associated with the numerical solution of the TFNSFP system is that, in addition to it being nonlocal in time, it is, even in its simplest form, posed on a spatial domain that is the Cartesian product of two \(d\)-dimensional domains, for \(d\in\{2, 3\}\), the \(d\)-dimensional flow domain and the \(d\)-dimensional configuration space domain. We combine a kernel compression technique based on rational approximation of the integral kernel of the time-fractional derivative with a space-splitting method. By doing so, we transform the time-fractional partial differential equation into a fixed number of integer-order in time partial differential equations. The Fokker-Planck equation posed on the \(2d\)-dimensional domain is decoupled into two \(d\)-dimensional problems, and a standard combination of the Hermite spectral method on the configuration space domain and a finite element method on the flow domain is then applied. Finally, we combine our numerical scheme for the time-fractional Fokker-Planck equation (TFFPE) with a standard Navier-Stokes solver. We propose an efficient implementation strategy based on the algebraic structure of the discretized time-fractional Fokker-Planck equation, which significantly reduces the computational cost.

MSC:

35Qxx Partial differential equations of mathematical physics and other areas of application
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

Software:

FODE; MFEM; AAA
Full Text: DOI

References:

[1] Groisman, A.; Steinberg, V., Elastic turbulence in a polymer solution flow. Nature, 6782, 53-55 (2000)
[2] Joseph, D. D., Fluid Dynamics of Viscoelastic Liquids (2013), Springer Science & Business Media · Zbl 0698.76002
[3] Fokker, A. D., Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys., 5, 810-820 (1914)
[4] M. Planck, Sitzungsber, Preuss. Akad. Wiss. Phys. Math. Kl 325 (3).
[5] Chang, L.-D.; Waxman, D., Quantum Fokker-Planck equation. J. Phys. C, Solid State Phys., 31, 5873 (1985)
[6] Carmichael, H., Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, vol. 1 (1999), Springer Science & Business Media · Zbl 0918.60095
[7] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry, vol. 1 (1992), Elsevier
[8] La, J., On diffusive 2D Fokker-Planck-Navier-Stokes systems. Arch. Ration. Mech. Anal., 3, 1531-1588 (2020) · Zbl 1461.76027
[9] Renardy, M.; Thomases, B., A mathematician’s perspective on the Oldroyd B model: progress and future challenges. J. Non-Newton. Fluid Mech. (2021)
[10] Barrett, J. W.; Süli, E., Existence of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers with variable density and viscosity. J. Differ. Equ., 12, 3610-3677 (2012) · Zbl 1364.35254
[11] Feireisl, E.; Lu, Y.; Süli, E., Dissipative weak solutions to compressible Navier-Stokes-Fokker-Planck systems with variable viscosity coefficients. J. Math. Anal. Appl., 1, 322-351 (2016) · Zbl 1433.35270
[12] Mizerová, H.; She, B., A conservative scheme for the Fokker-Planck equation with applications to viscoelastic polymeric fluids. J. Comput. Phys., 941-953 (2018) · Zbl 1416.65355
[13] Barrett, J. W.; Süli, E., Existence of global weak solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids. Nonlinear Anal., Real World Appl., 362-395 (2018) · Zbl 1379.35232
[14] Gwiazda, P.; Lukáčová-Medvidová, M.; Mizerová, H.; Świerczewska Gwiazda, A., Existence of global weak solutions to the kinetic Peterlin model. Nonlinear Anal., Real World Appl., 465-478 (2018) · Zbl 1405.35219
[15] Barrett, J.; Süli, E., Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete Contin. Dyn. Syst., Ser. S, 3, 371-408 (2010) · Zbl 1220.35178
[16] Barrett, J. W.; Süli, E., Existence of global weak solutions to compressible isentropic finitely extensible nonlinear bead-spring chain models for dilute polymers: the two-dimensional case. J. Differ. Equ., 1, 592-626 (2016) · Zbl 1343.35183
[17] Dębiec, T.; Süli, E., On a class of generalised solutions to the kinetic Hookean dumbbell model for incompressible dilute polymeric fluids: existence and macroscopic closure, arXiv preprint
[18] Lions, P.-L.; Masmoudi, N., Global existence of weak solutions to some micro-macro models. C. R. Math., 1, 15-20 (2007) · Zbl 1117.35312
[19] Masmoudi, N.; Zhang, P.; Zhang, Z., Global well-posedness for 2D polymeric fluid models and growth estimate. Physica D, 10-12, 1663-1675 (2008) · Zbl 1143.76356
[20] Masmoudi, N., Well-posedness for the FENE dumbbell model of polymeric flows. Commun. Pure Appl. Math., 12, 1685-1714 (2008) · Zbl 1157.35088
[21] Schonbek, M. E., Existence and decay of polymeric flows. SIAM J. Math. Anal., 2, 564-587 (2009) · Zbl 1189.35263
[22] Barrett, J. W.; Süli, E., Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal., 4, 937-959 (2009) · Zbl 1180.82232
[23] Dȩbiec, T.; Süli, E., Corotational Hookean models of dilute polymeric fluids: existence of global weak solutions, weak-strong uniqueness, equilibration, and macroscopic closure. SIAM J. Math. Anal., 1, 310-346 (2023) · Zbl 1537.35271
[24] Lozinski, A.; Chauvière, C., A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations: 2D FENE model. J. Comput. Phys., 2, 607-625 (2003) · Zbl 1060.82525
[25] Knezevic, D. J.; Süli, E., A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model. ESAIM Math. Model. Numer. Anal., 6, 1117-1156 (2009) · Zbl 1180.82137
[26] Knezevic, D. J.; Süli, E., Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift. ESAIM Math. Model. Numer. Anal., 3, 445-485 (2009) · Zbl 1180.82136
[27] Fok, J.; Guo, B.; Tang, T., Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comput., 240, 1497-1528 (2002) · Zbl 1007.65068
[28] Duan, C.; Chen, W.; Liu, C.; Yue, X.; Zhou, S., Structure-preserving numerical methods for nonlinear Fokker-Planck equations with nonlocal interactions by an energetic variational approach. SIAM J. Sci. Comput., 1, B82-B107 (2021) · Zbl 1457.65046
[29] Pareschi, L.; Zanella, M., Structure preserving schemes for nonlinear Fokker-Planck equations and applications. J. Sci. Comput., 3, 1575-1600 (2018) · Zbl 1395.65027
[30] Fritz, M.; Süli, E.; Wohlmuth, B., Analysis of a dilute polymer model with a time-fractional derivative (2023)
[31] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Hänggi, P., Use and abuse of a fractional Fokker-Planck dynamics for time-dependent driving. Phys. Rev. Lett., 12 (2007)
[32] Diethelm, K., The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (2010), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 1215.34001
[33] Oldham, K.; Spanier, J., The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order (1974), Elsevier · Zbl 0292.26011
[34] Jin, B.; Lazarov, R.; Zhou, Z., An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal., 1, 197-221 (2016) · Zbl 1336.65150
[35] Lubich, C., On the stability of linear multistep methods for Volterra convolution equations. IMA J. Numer. Anal., 4, 439-465 (1983) · Zbl 0543.65095
[36] Diethelm, K.; Ford, N. J.; Freed, A. D., A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn., 1, 3-22 (2002) · Zbl 1009.65049
[37] Beylkin, G.; Monzón, L., On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal., 1, 17-48 (2005) · Zbl 1075.65022
[38] McLean, W., Exponential sum approximations for \(t^{- \beta}\), 911-930 · Zbl 1405.65022
[39] Baffet, D.; Hesthaven, J. S., A kernel compression scheme for fractional differential equations. SIAM J. Numer. Anal., 2, 496-520 (2017) · Zbl 1359.65106
[40] Diethelm, K.; Garrappa, R.; Stynes, M., Good (and not so good) practices in computational methods for fractional calculus. Mathematics, 3, 324 (2020)
[41] Schneider, W. R.; Wyss, W., Fractional diffusion and wave equations. J. Math. Phys., 1, 134-144 (1989) · Zbl 0692.45004
[42] Deng, W., Numerical algorithm for the time fractional Fokker-Planck equation. J. Comput. Phys., 2, 1510-1522 (2007) · Zbl 1388.35095
[43] Odibat, Z.; Momani, S., Numerical solution of Fokker-Planck equation with space- and time-fractional derivatives. Phys. Lett. A, 5, 349-358 (2007) · Zbl 1209.65114
[44] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal., 1, 204-226 (2009) · Zbl 1416.65344
[45] Vong, S.; Wang, Z., A high order compact finite difference scheme for time fractional Fokker-Planck equations. Appl. Math. Lett., 38-43 (2015) · Zbl 1316.82023
[46] Jiang, Y.; Xu, X., A monotone finite volume method for time fractional Fokker-Planck equations. Sci. China Math., 4, 783-794 (2019) · Zbl 1426.65139
[47] Momani, S.; Arqub, O. A.; Freihat, A.; Al-Smadi, M., Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. Appl. Comput. Math., 3, 319-330 (2016) · Zbl 1364.35369
[48] Mahdy, A. M.S., Numerical solutions for solving model time-fractional Fokker-Planck equation. Numer. Methods Partial Differ. Equ., 2, 1120-1135 (2021) · Zbl 07776006
[49] Mainardi, F., Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models (2022), World Scientific · Zbl 1495.26006
[50] Shen, J.; Tang, T.; Wang, L.-L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer Science & Business Media · Zbl 1227.65117
[51] Gottlieb, D.; Orszag, S. A., 3. Survey of approximation theory, 21-45
[52] Mohammadi, M.; Borzi, A., A Hermite spectral method for a Fokker-Planck optimal control problem in an unbounded domain. Int. J. Uncertain. Quantificat., 3 (2015) · Zbl 1498.65173
[53] Khristenko, U.; Wohlmuth, B., Solving time-fractional differential equations via rational approximation. IMA J. Numer. Anal., 1263-1290 (2022) · Zbl 07726033
[54] Bernstein, S., Sur les fonctions absolument monotones. Acta Math., 1, 1-66 (1929) · JFM 55.0142.07
[55] Nakatsukasa, Y.; Sète, O.; Trefethen, L. N., The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 3, A1494-A1522 (2018) · Zbl 1390.41015
[56] Strang, G., On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 3, 506-517 (1968) · Zbl 0184.38503
[57] McLachlan, R. I.; Quispel, G. R.W., Splitting methods. Acta Numer., 341-434 (2002) · Zbl 1105.65341
[58] Chauvière, C.; Lozinski, A., Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids, 5-6, 687-696 (2004) · Zbl 1100.76549
[59] Shen, J.; Wang, L.-L., Some recent advances on spectral methods for unbounded domains. Commun. Comput. Phys., 2-4, 195-241 (2009) · Zbl 1364.65265
[60] Chorin, A. J., A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 1, 12-26 (1967) · Zbl 0149.44802
[61] Chorin, A. J., Numerical solution of the Navier-Stokes equations. Math. Comput., 104, 745-762 (1968) · Zbl 0198.50103
[62] Guermond, J.-L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng., 44-47, 6011-6045 (2006) · Zbl 1122.76072
[63] Franco, M.; Camier, J.-S.; Andrej, J.; Pazner, W., High-order matrix-free incompressible flow solvers with GPU acceleration and low-order refined preconditioners. Comput. Fluids (2020) · Zbl 1519.76145
[64] Tomboulides, A. G.; Lee, J. C.Y.; Orszag, S. A., Numerical simulation of low Mach number reactive flows. J. Sci. Comput., 2, 139-167 (1997) · Zbl 0905.76055
[65] Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.-S.; Dobrev, J. C.V.; Dudouit, Y.; Fisher, A.; Kolev, T.; Pazner, W.; Stowell, M.; Tomov, V.; Akkerman, I.; Dahm, J.; Medina, D.; Zampini, S., MFEM: a modular finite element methods library. Comput. Math. Appl., 42-74 (2021) · Zbl 1524.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.