×

Modular transformations of homological blocks for Seifert fibered homology 3-spheres. (English) Zbl 07809222

This article is about the \(q\)-series invariants of 3-manifolds, which are also known as Gukov-Pei-Putrov-Vafa (GPPV) invariants, \(\widehat{Z}\)-invariants, or homological blocks. They were first conjectured in [S. Gukov et al., J. High Energy Phys. 2017, No. 7, Paper No. 71, 82 p. (2017; Zbl 1380.58018)] and subsequently were defined for negative-definite plumbed three-manifolds in [S. Gukov et al., J. Knot Theory Ramifications 29, No. 2, Article ID 2040003, 85 p. (2020; Zbl 1448.57020)]. In particular, these authors considered the Witten-Reshetikhin-Turaev (WRT)-invariant \(\tau^{SU(2)}_k[M(\Gamma);q]\) for a plumbed three-manifold \(M(\Gamma)\) and positive integer level \(k\). They performed the analytic continuation of the WRT-invariant (\(q\rightarrow q\)) to get the \(q\)-series invariant of 3-manifolds. It is worth noting that the convergence of \(q\)-series led to the choice of \(|q|<1\), which subsquently forces us to be in the subset of plumbed 3-manifold that is, negative-definite plumbed 3-manifolds. Further, these \(q\)-series or homological blocks are interesting objects in quantum topology as they provide a fresh perspective on the categorification problem of WRT invariants. Moreover, homological blocks can also be seen as the vast generalization of \(q\)-series obtained in [R. Lawrence and D. Zagier, Asian J. Math. 3, No. 1, 93–107 (1999; Zbl 1024.11028); K. Hikami, Int. J. Math. 16, No. 6, 661–685 (2005; Zbl 1088.57013); K. Hikami, Commun. Math. Phys. 268, No. 2, 285–319 (2006; Zbl 1147.58023)]. In addition to all these developments, the modular properties of homological blocks were first discussed in [M. C. N. Cheng et al., J. High Energy Phys. 2019, No. 10, Paper No. 10, 95 p. (2019; Zbl 1427.81118)].
The paper under review studies the modular properties of homological blocks associated to a Seifert fibered integral homology 3-sphere. In particular, the authors have given the explicit form of modular transformation formulas in Theorem 5.5. This result is achieved by rewriting the corresponding homological blocks in terms of false theta functions and then applying their modular properties to derive the final outcome. Further, as an application of their result, the authors also provide asymptotic expansion formulas of the WRT invariants in Theorem 5.10.

MSC:

57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)
57K31 Invariants of 3-manifolds (including skein modules, character varieties)
58J28 Eta-invariants, Chern-Simons invariants
11F37 Forms of half-integer weight; nonholomorphic modular forms

References:

[1] Andersen, JE, The Witten-Reshetikhin-Turaev invariants of finite order mapping tori I, J. Reine Angew. Math., 681, 1-38, (2013) · Zbl 1305.57023 · doi:10.1515/crelle-2012-0033
[2] Andersen, JE; Himpel, B., The Witten-Reshetikhin-Turaev invariants of finite order mapping tori II, Quantum Topol., 3, 3-4, 377-421, (2012) · Zbl 1260.57024 · doi:10.4171/qt/33
[3] Andersen, J.E., Mistegård, W.E.: Resurgence Analysis of Quantum Invariants of Seifert Fibered Homology Spheres (2020). arXiv:1811.05376v4 · Zbl 07731376
[4] Beasley, C.; Witten, E., Non-abelian localization for Chern-Simons theory, J. Differ. Geom., 70, 2, 183-323, (2005) · Zbl 1097.58012 · doi:10.4310/jdg/1143642932
[5] Bringmann, K.; Nazaroglu, C., A framework for modular properties of false theta functions, Res. Math. Sci., 6, 3, 30-23, (2019) · Zbl 1456.11074 · doi:10.1007/s40687-019-0192-2
[6] Bringmann, K., Mahlburg, K., Milas, A.: Quantum modular forms and plumbing graphs of 3-manifolds (2018). arXiv:1810.05612 · Zbl 1444.11112
[7] Bringmann, K.; Mahlburg, K.; Milas, A., Higher depth quantum modular forms and plumbed 3-manifolds, Lett. Math. Phys., 110, 10, 2675-2702, (2020) · Zbl 1460.11051 · doi:10.1007/s11005-020-01310-z
[8] Bringmann, K., Kaszian, J., Milas, A., Nazaroglu, C.: Higher depth false modular forms. (2021). arXiv:2109.00394 · Zbl 1531.11043
[9] Bringmann, K.; Kaszian, J.; Milas, A.; Nazaroglu, C., Integral representations of rank two false theta functions and their modularity properties, Res. Math. Sci., 8, 4, 54-31, (2021) · Zbl 1482.11069 · doi:10.1007/s40687-021-00284-1
[10] Charles, L.: On the Witten asymptotic conjecture for Seifert manifolds (2016). arXiv:1605.04124
[11] Cheng, MCN; Ferrari, F.; Sgroi, G., Three-manifold quantum invariants and mock theta functions, Philos. Trans. R. Soc. A, 378, 2163, 20180439-15, (2020) · Zbl 1462.11037 · doi:10.1098/rsta.2018.0439
[12] Cheng, M.C.N., Chun, S., Ferrari, F., Gukov, S., Harrison, S.M.: 3d modularity. J. High Energy Phys. 10, 10-93 (2019). doi:10.1007/jhep10(2019)010
[13] Chun, S.: A resurgence analysis of the \(SU(2)\) Chern-Simons partition functions on a Brieskorn homology sphere \(\Sigma (2,5,7) (2017)\). arxiv:1701.03528
[14] Chung, H-J, BPS invariants for Seifert manifolds, J. High Energy Phys., 3, 113-66, (2020) · Zbl 1435.81195 · doi:10.1007/jhep03(2020)113
[15] Ekholm, T., Gruen, A., Gukov, S., Kucharski, P., Park, S., Sułkowski, P.: \( \widehat{Z}\) at large \(N\): from curve counts to quantum modularity. arXiv:2005.13349 (2020). https://arxiv.org/abs/2005.13349 · Zbl 1512.81062
[16] Freed, DS, Reidemeister torsion, spectral sequences, and Brieskorn spheres, J. Reine Angew. Math., 429, 75-89, (1992) · Zbl 0743.57015 · doi:10.1515/crll.1992.429.75
[17] Freed, DS; Gompf, RE, Computer calculation of Witten’s 3-manifold invariant, Commun. Math. Phys., 141, 1, 79-117, (1991) · Zbl 0739.53065 · doi:10.1007/BF02100006
[18] Fuji, H., Iwaki, K., Murakami, H., Terashima, Y.: Witten-Reshetikhin-Turaev function for a knot in Seifert manifolds. Commun. Math. Phys. 386(1), 225-251 (2021). doi:10.1007/s00220-021-03953-y. arXiv:2007.15872v3 · Zbl 1470.57010
[19] Gukov, S.; Manolescu, C., A two-variable series for knot complements, Quantum Topol., 12, 1, 1-109, (2021) · Zbl 1497.57015 · doi:10.4171/qt/145
[20] Gukov, S.; Putrov, P.; Vafa, C., Fivebranes and 3-manifold homology, J. High Energy Phys., 2017, 71, 1-82, (2017) · Zbl 1380.58018 · doi:10.1007/JHEP07(2017)071
[21] Gukov, S.; Pei, D.; Putrov, P.; Vafa, C., BPS spectra and 3-manifold invariants, J. Knot Theory Ramif., 29, 2, 2040003-85, (2020) · Zbl 1448.57020 · doi:10.1142/S0218216520400039
[22] Gukov, S.; Hsin, P-S; Nakajima, H.; Park, S.; Pei, D.; Sopenko, N., Rozansky-Witten geometry of Coulomb branches and logarithmic knot invariants, J. Geom. Phys., 168, 104311-22, (2021) · Zbl 1471.81084 · doi:10.1016/j.geomphys.2021.104311
[23] Hansen, S.K.: Analytic asymptotic expansions of the Reshetikhin-Turaev invariants of Seifert 3-manifolds for SU(2). arXiv:math/0510549 (2005). https://arxiv.org/abs/math/0510549
[24] Hansen, S.K., Takata, T.: Quantum invariants of Seifert \(3\)-manifolds and their asymptotic expansions. In: Invariants of Knots and 3-manifolds (Kyoto, 2001). Geom. Topol. Monogr., vol. 4, pp. 69-87 (2002). doi:10.2140/gtm.2002.4.69 · Zbl 1017.57003
[25] Hikami, K., On the quantum invariant for the Brieskorn homology spheres, Int. J. Math., 16, 6, 661-685, (2005) · Zbl 1088.57013 · doi:10.1142/S0129167X05003004
[26] Hikami, K., Quantum invariant, modular form, and lattice points, Int. Math. Res. Not., 3, 121-154, (2005) · Zbl 1075.57005 · doi:10.1155/IMRN.2005.121
[27] Hikami, K., Quantum invariants, modular forms, and lattice points. II, J. Math. Phys., 47, 10, 1-32, (2006) · Zbl 1112.58026 · doi:10.1063/1.2349484
[28] Jeffrey, LC, Chern-Simons-Witten invariants of lens spaces and torus bundles, and the semiclassical approximation, Commun. Math. Phys., 147, 3, 563-604, (1992) · Zbl 0755.53054 · doi:10.1007/BF02097243
[29] Lawrence, R.; Rozansky, L., Witten-Reshetikhin-Turaev invariants of Seifert manifolds, Commun. Math. Phys., 205, 2, 287-314, (1999) · Zbl 0966.57017 · doi:10.1007/s002200050678
[30] Lawrence, R., Zagier, D.: Modular forms and quantum invariants of 3-manifolds, vol. 3, pp. 93-107. Sir Michael Atiyah: a great mathematician of the twentieth century (1999). doi:10.4310/AJM.1999.v3.n1.a5 · Zbl 1024.11028
[31] Mori, A.; Murakami, Y., Witten-Reshetikhin-Turaev invariants, homological blocks, and quantum modular forms for unimodular plumbing H-graphs, SIGMA Symmetry Integrability Geom. Methods Appl., 18, 034-20, (2022) · Zbl 1504.57031 · doi:10.3842/SIGMA.2022.034
[32] Rozansky, L., A large \(k\) asymptotics of Witten’s invariant of Seifert manifolds, Commun. Math. Phys., 171, 2, 279-322, (1995) · Zbl 0837.57014 · doi:10.1007/BF02099272
[33] Rozansky, L., Residue formulas for the large \(k\) asymptotics of Witten’s invariants of Seifert manifolds. The case of SU(2), Commun. Math. Phys., 178, 1, 27-60, (1996) · Zbl 0864.57017 · doi:10.1007/BF02104907
[34] Vignéras, M.-F.: Séries thêta des formes quadratiques indéfinies. In: Modular Functions in One Variable VI. Lecture Notes in Mathematics, vol. 627, pp. 227-239 (1977). https://link.springer.com/book/10.1007/BFb0065293 · Zbl 0363.10016
[35] Witten, E., Quantum field theory and the Jones polynomial, Commun. Math. Phys., 121, 3, 351-399, (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[36] Zwegers, S.: Mock theta functions. Ph.D. thesis, Utrecht University (2002) · Zbl 1194.11058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.