×

Buildings, valuated matroids, and tropical linear spaces. (English) Zbl 07809023

The most explicit version of the tropicalization operation is given by embedded tropicalization: over a non-archimedean base field \((K, \operatorname{val}_K)\), choose an embedding \(\iota : X \hookrightarrow \operatorname{Tor}(\Sigma)\) of your variety \(X\) into a toric variety and then, in each torus orbit, apply the valuation \(\operatorname{val}_K\) coordinatewise. The images of these valuation maps are then the strata of the tropicalization \(\operatorname{Trop}(X, \iota)\) of \(X\) with respect to \(\iota\). This tropical object highly depends on \(\iota\) and it was observed by [S. Payne, Math. Res. Lett. 16, No. 2–3, 543–556 (2009; Zbl 1193.14077)] that removing this dependence via a projective limit construction yields the Berkovich analytification of \(X\), i.e. \[ X^\mathrm{an} \cong \lim\limits_{\overset{\longleftarrow}{\iota}} \operatorname{Trop}(X, \iota) \] which suggests to view \(X^\mathrm{an}\) as a universal tropicalization.
In the paper under review, the authors restrict attention to the subproblem of describing a universal tropicalization of \(\mathbb{P}^r\) with respect to linear embeddings. The first theorem states that this role is played by the (bordified) Goldman-Iwahori space \(\overline{\mathcal{X}}_r\) (which in case of spherically complete base field is nothing but a compactification of the affine Bruhat-Tits building of \(\operatorname{PGL}_{r+1}\)), i.e. \[ \overline{\mathcal{X}}_r \cong \lim\limits_{\overset{\longleftarrow}{\iota \text{ linear}}} \operatorname{Trop}(\mathbb{P}^r, \iota). \] Moreover, there is a faithful tropicalization result, which says that the tropicalization of a linear space \(\iota : \mathbb{P}^r \hookrightarrow \mathbb{P}^n\) can be embedded into the building of \(\operatorname{PGL}_{r+1}\) such \(\operatorname{Trop}(\mathbb{P}^r, \iota)\) is given as the restriction of some universal tropicalization from the building of \(\operatorname{PGL}_{n+1}\) to \(n\)-dimensional tropical projective space.
Finally, the authors tie their universal tropicalization of linear spaces to the familiar description of tropical linear spaces via valuated matroids: in their third theorem the authors consider the universal valuated matroid, which is a valuated matroid on the uncountable set of \((r+1)\)-element subsets of \(K^{r+1} \setminus \{0\}\). The authors show that the construction of a tropical linear space from a valuated matroid can be carried out on this infinite object as well and as a result recovers the Goldman-Iwahori space, i.e. the universal tropical linear space.

MSC:

14T10 Foundations of tropical geometry and relations with algebra

Citations:

Zbl 1193.14077

References:

[1] P.Abramenko and K. S.Brown, Buildings: theory and applications, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. · Zbl 1214.20033
[2] M.Baker, S.Payne, and J.Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom.3 (2016), no. 1, 63-105. · Zbl 1470.14124
[3] A.Barría Comicheo and K.Shamseddine, Summary on non‐Archimedean valued fields, Advances in ultrametric analysis, Contemp. Math., vol. 704, American Mathematical Society, Providence, RI, 2018, pp. 1-36. · Zbl 1430.12010
[4] C. D.Bennett and P. N.Schwer, On axiomatic definitions of non‐discrete affine buildings, Adv. Geom.14 (2014), no. 3, 381-412. (With an appendix by Koen Struyve.) · Zbl 1408.51009
[5] V. G.Berkovich, Spectral theory and analytic geometry over non‐Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. · Zbl 0715.14013
[6] S.Boucksom and D.Eriksson, Spaces of norms, determinant of cohomology and Fekete points in non‐Archimedean geometry, Adv. Math.378 (2021), Paper No. 107501, 124. · Zbl 1460.32044
[7] M.Brandt, C.Eur, and L.Zhang, Tropical flag varieties, Adv. Math.384 (2021), Paper No. 107695, 41. · Zbl 1510.14054
[8] A.Chernikov and A.Mennen, Combinatorial properties of non‐archimedean convex sets, Pac. J. Math.323 (2023), no. 1, 1-30. · Zbl 1527.52004
[9] M. A.Cueto, M.Häbich, and A.Werner, Faithful tropicalization of the Grassmannian of planes, Math. Ann.360 (2014), no. 1-2, 391-437. · Zbl 1310.14049
[10] A.Dress, V.Moulton, and W.Terhalle, T‐theory: an overview, Eur. J. Combin.17 (1996), no. 2-3, 161-175. · Zbl 0853.54027
[11] A.Dress and W.Terhalle, The tree of life and other affine buildings, Doc. Math. (Bielefeld) Extra Vol. ICM Berlin 1998, Vol. III, 1998, pp. 565-574. · Zbl 0904.05019
[12] A. W. M.Dress and W.Terhalle, A combinatorial approach to p‐adic geometry, Geom. Dedicata46 (1993), no. 2, 127-148. · Zbl 0777.05038
[13] A. W. M.Dress and W.Wenzel, Valuated matroids, Adv. Math.93 (1992), no. 2, 214-250. · Zbl 0754.05027
[14] M.Einsiedler, M.Kapranov, and D.Lind, Non‐Archimedean amoebas and tropical varieties, J. Reine Angew. Math.601 (2006), 139-157. · Zbl 1115.14051
[15] A.Fink and J. A.Olarte, Presentations of transversal valuated matroids, J. Lond. Math. Soc. (2)105 (2022), no. 1, 24-62. · Zbl 1519.05042
[16] T.Foster, P.Gross, and S.Payne, Limits of tropicalizations, Israel J. Math.201 (2014), no. 2, 835-846. · Zbl 1319.14059
[17] J.Giansiracusa and N.Giansiracusa, The universal tropicalization and the Berkovich analytification, Kybernetika (Prague)58 (2022), no. 5, 790-815. · Zbl 1524.14129
[18] O.Goldman and N.Iwahori, The space of \(p\)‐adic norms, Acta Math.109 (1963), 137-177. · Zbl 0133.29402
[19] W.Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math., vol. 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125-189. · Zbl 1318.14061
[20] W.Gubler, J.Rabinoff, and A.Werner, Skeletons and tropicalizations, Adv. Math.294 (2016), 150-215. · Zbl 1370.14024
[21] W.Gubler, J.Rabinoff, and A.Werner, Tropical skeletons, Ann. Inst. Fourier (Grenoble)67 (2017), no. 5, 1905-1961. · Zbl 1439.14084
[22] M. H.Gunturkun and A. U. O.Kisisel, Linear tropicalizations, arXiv:1411.3833 [math], 2015.
[23] H.Hirai, Uniform semimodular lattices and valuated matroids, J. Combin. Theory Ser. A165 (2019), 325-359. · Zbl 1414.05066
[24] H.Hirai, Uniform modular lattices and affine buildings, Adv. Geom.20 (2020), no. 3, 375-390. · Zbl 1492.51006
[25] M.Joswig, Essentials of tropical combinatorics, Graduate Studies in Mathematics, vol. 219, American Mathematical Society (AMS), Providence, RI, 2021 (English). · Zbl 1535.14001
[26] M.Joswig, B.Sturmfels, and J.Yu, Affine buildings and tropical convexity, Albanian J. Math.1 (2007), no. 4, 187-211. · Zbl 1133.52003
[27] S.Keel and J.Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J.134 (2006), no. 2, 259-311. · Zbl 1107.14026
[28] W.Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math.167 (1932), 160-196. · Zbl 0004.09802
[29] A.Küronya, P.Souza, and M.Ulirsch, Tropicalization of toric prevarieties, arXiv:2107.03139 [math], 2021.
[30] D.Maclagan and B.Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015. · Zbl 1321.14048
[31] A.Parreau, Dégénérescences de sous‐groupes discrets de groupes de Lie semisimples et actions de groupes sur des immeubles affines, These de doctorat, Paris 11, 2000.
[32] S.Payne, Analytification is the limit of all tropicalizations, Math. Res. Lett.16 (2009), no. 3, 543-556. · Zbl 1193.14077
[33] J.Rabinoff, Tropical analytic geometry, Newton polygons, and tropical intersections, Adv. Math.229 (2012), no. 6, 3192-3255. · Zbl 1285.14072
[34] B.Rémy, A.Thuillier, and A.Werner, Bruhat-Tits theory from Berkovich’s point of view. I. Realizations and compactifications of buildings, Ann. Sci. Éc. Norm. Supér. (4)43 (2010), no. 3, 461-554. · Zbl 1198.51006
[35] B.Rémy, A.Thuillier, and A.Werner, Bruhat-Tits theory from Berkovich’s point of view. II Satake compactifications of buildings, J. Inst. Math. Jussieu11 (2012), no. 2, 421-465. · Zbl 1241.51003
[36] B.Rémy, A.Thuillier, and A.Werner, Bruhat-Tits buildings and analytic geometry. Berkovich spaces and applications, Lecture Notes in Math., vol. 2119, Springer, Cham, 2015, pp. 141-202. · Zbl 1326.51005
[37] F.Rincón, Local tropical linear spaces, Discrete Comput. Geom.50 (2013), no. 3, 700-713. · Zbl 1281.14049
[38] A. M.Robert, A course in \(p\)‐adic analysis, Graduate Texts in Mathematics, vol. 198, Springer, New York, 2000. · Zbl 0947.11035
[39] O. F. G.Schilling, The theory of valuations, Mathematical Surveys, vol. 4, American Mathematical Society, New York, 1950. · Zbl 0037.30702
[40] P.Schneider, Nonarchimedean functional analysis, Springer Monographs in Mathematics, Springer, Berlin, 2002. · Zbl 0998.46044
[41] D.Speyer and B.Sturmfels, The tropical Grassmannian, Adv. Geom.4 (2004), no. 3, 389-411. · Zbl 1065.14071
[42] D. E.Speyer, Tropical linear spaces, SIAM J. Discrete Math.22 (2008), no. 4, 1527-1558. · Zbl 1191.14076
[43] A.Werner, Compactification of the Bruhat-Tits building of PGL by seminorms, Math. Z.248 (2004), no. 3, 511-526. · Zbl 1121.20024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.