×

A geometric approach to the Yang-Mills mass gap. (English) Zbl 07807308

Summary: I provide a new idea based on geometric analysis to obtain a positive mass gap in pure non-abelian renormalizable Yang-Mills theory. The orbit space, that is the space of connections of Yang-Mills theory modulo gauge transformations, is equipped with a Riemannian metric that naturally arises from the kinetic part of reduced classical action and admits a positive definite sectional curvature. The corresponding regularized Bakry-Émery Ricci curvature (if positive) is shown to produce a mass gap for 2+1 and 3+1 dimensional Yang-Mills theory assuming the existence of a quantized Yang-Mills theory on \((\mathbb{R}^{1+2}, \eta)\) and \((\mathbb{R}^{1+3}, \eta)\), respectively. My result on the gap calculation, described at least as a heuristic one, applies to non-abelian Yang-Mills theory with any compact semi-simple Lie group in the aforementioned dimensions. In 2+1 dimensions, the square of the Yang-Mils coupling constant \(g_{YM}^2\) has the dimension of mass, and therefore the spectral gap of the Hamiltonian is essentially proportional to \(g_{YM}^2\) with proportionality constant being purely numerical as expected. Due to the dimensional restriction on 3+1 dimensional Yang-Mills theory, it seems one ought to introduce a length scale to obtain an energy scale. It turns out that a certain ‘trace’ operation on the infinite-dimensional geometry naturally introduces a length scale that has to be fixed by measuring the energy of the lowest glu-ball state. However, this remains to be understood in a rigorous way.

MSC:

81-XX Quantum theory

References:

[1] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys. B44 (1972) 189 [INSPIRE].
[2] D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev. Lett.30 (1973) 1343 [INSPIRE].
[3] J. Glimm and A. Jaffe, Collected Papers: Constructive Quantum Field Theory Selected Papers, Springer Science & Business Media (1985). · Zbl 0574.01019
[4] A. Jaffe, Constructive quantum field theory, Math. Phys. 2000 (2000) 111. · Zbl 1074.81543
[5] V. Moncrief, A. Marini and R. Maitra, Modified Semi-Classical Methods for Nonlinear Quantum Oscillations Problems, [doi:10.1063/1.4755836] [arXiv:1201.5311]. · Zbl 1278.81086
[6] Marini, A.; Maitra, R.; Moncrief, V., Euclidean signature semi-classical methods for bosonic field theories: interacting scalar fields, Ann. Math. Sci. Appl., 01, 3 (2016) · Zbl 1386.35062 · doi:10.4310/AMSA.2016.v1.n1.a1
[7] Marini, A.; Maitra, R.; Moncrief, V., A Euclidean Signature Semi-Classical Program, Commun. Anal. Geom., 28, 979 (2020) · Zbl 1452.83006 · doi:10.4310/CAG.2020.v28.n4.a6
[8] Moncrief, V.; Marini, A.; Maitra, R., Orbit Space Curvature as a Source of Mass in Quantum Gauge Theory, Ann. Math. Sci. Appl., 04, 313 (2019) · Zbl 1429.81053 · doi:10.4310/AMSA.2019.v4.n2.a3
[9] S. Bates and A. Weinstein, Lectures on the geometry of quantization, Amer. Math. Soc. 8 (1997) [INSPIRE]. · Zbl 1049.53061
[10] A. Martinez, An introduction to semiclassical and microlocal analysis, Springer (2002) [doi:10.1007/978-1-4757-4495-8]. · Zbl 0994.35003
[11] I.M. Singer, The Geometry of the Orbit Space for Nonabelian Gauge Theories. (Talk), Phys. Scripta24 (1981) 817 [INSPIRE]. · Zbl 1063.81623
[12] O. Babelon and C.M. Viallet, On the Riemannian Geometry of the Configuration Space of Gauge Theories, Commun. Math. Phys.81 (1981) 515 [INSPIRE]. · Zbl 0495.58003
[13] A. Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III, Dunod, Paris (1958). · Zbl 0096.16001
[14] Karabali, D.; Kim, C-J; Nair, VP, Planar Yang-Mills theory: Hamiltonian, regulators and mass gap, Nucl. Phys. B, 524, 661 (1998) · Zbl 1031.81561 · doi:10.1016/S0550-3213(98)00309-5
[15] L. Gross, C. King and A. Sengupta, Two-dimensional yang-mills theory via stochastic differential equations, Annals Phys.194 (1989) 65 [INSPIRE]. · Zbl 0698.60047
[16] S. Klimek and W. Kondracki, A construction of two-dimensional quantum chromodynamics, Commun. Math. Phys.113 (1987) 389 [INSPIRE]. · Zbl 0629.58037
[17] E. Witten, On quantum gauge theories in two-dimensions, Commun. Math. Phys.141 (1991) 153 [INSPIRE]. · Zbl 0762.53063
[18] A. Jaffe and E. Witten, Quantum yang-mills theory, The millennium prize problems, The Clay Mathematics Institute of Cambridge, Massachusetts, U.S.A. (2006). · Zbl 1194.81002
[19] Moretti, V., One loop stress tensor renormalization in curved background: the relation between zeta function and point splitting approaches, and an improved point splitting procedure, J. Math. Phys., 40, 3843 (1999) · Zbl 0969.81045 · doi:10.1063/1.532929
[20] O. Babelon and C.M. Viallet, The Geometrical Interpretation of the Faddeev-Popov Determinant, Phys. Lett. B85 (1979) 246 [INSPIRE].
[21] C.N. Jimenez, A mathematical interpretation of the point splitting procedure in quantum field theory, Lecturas Mat.27 (2000) 83 [INSPIRE].
[22] B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum, Annals Phys.146 (1983) 209 [INSPIRE]. · Zbl 0547.35039
[23] M. Aizenman and H. Duminil-Copin, Marginal triviality of the scaling limits of critical 4D Ising and \({\phi}_4^4\) models, Annals Math.194 (2021) 163 [arXiv:1912.07973] [INSPIRE]. · Zbl 1489.60150
[24] C. Brans and R.H. Dicke, Mach’s principle and a relativistic theory of gravitation, Phys. Rev.124 (1961) 925 [INSPIRE]. · Zbl 0103.21402
[25] Branding, V.; Fajman, D.; Kröncke, K., Stable Cosmological Kaluza-Klein Spacetimes, Commun. Math. Phys., 368, 1087 (2019) · Zbl 1416.35266 · doi:10.1007/s00220-019-03319-5
[26] J. Lott, Some Geometric Properties of the Bakry-Émery-Ricci Tensor, Comment. Math. Helv.78 (2003) 865 [math/0211065]. · Zbl 1038.53041
[27] D. Bakry and M. Émery, Diffusions hypercontractives, Seminaire de probabilités XIX 1983/84 (1985) pp. 177-206. · Zbl 0561.60080
[28] Galloway, GJ; Woolgar, E., Cosmological singularities in Bakry-Émery spacetimes, J. Geom. Phys., 86, 359 (2014) · Zbl 1362.83018 · doi:10.1016/j.geomphys.2014.08.016
[29] Woolgar, E.; Wylie, W., Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes, J. Math. Phys., 57 (2016) · Zbl 1336.83033 · doi:10.1063/1.4940340
[30] A. Lichnerowicz, Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. AB271 (1970) A650. · Zbl 0208.50003
[31] A. Lichnerowicz, Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Diff. Geom.6 (1971) 47. · Zbl 0231.53063
[32] Orland, P., Gauge invariant coordinates on gauge theory orbit space, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.70.045014
[33] Frasca, M., Spectrum of Yang-Mills theory in 3 and 4 dimensions, Nucl. Part. Phys. Proc., 294-296, 124 (2018) · doi:10.1016/j.nuclphysbps.2018.02.005
[34] Frasca, M., Confinement in a three-dimensional Yang-Mills theory, Eur. Phys. J. C, 77, 255 (2017) · doi:10.1140/epjc/s10052-017-4824-7
[35] Athenodorou, A.; Teper, M., The glueball spectrum of SU(3) gauge theory in 3 + 1 dimensions, JHEP, 11, 172 (2020) · doi:10.1007/JHEP11(2020)172
[36] Lucini, B.; Rago, A.; Rinaldi, E., Glueball masses in the large N limit, JHEP, 08, 119 (2010) · Zbl 1290.81074 · doi:10.1007/JHEP08(2010)119
[37] T. Balaban, Convergent Renormalization Expansions for Lattice Gauge Theories, Commun. Math. Phys.119 (1988) 243 [INSPIRE]. · Zbl 0664.58050
[38] Vassilevich, DV, Heat kernel expansion: user’s manual, Phys. Rept., 388, 279 (2003) · Zbl 1042.81093 · doi:10.1016/j.physrep.2003.09.002
[39] Karabali, D.; Nair, VP, A Gauge invariant Hamiltonian analysis for nonAbelian gauge theories in (2+1)-dimensions, Nucl. Phys. B, 464, 135 (1996) · Zbl 1004.81521 · doi:10.1016/0550-3213(96)00034-X
[40] Karabali, D.; Nair, VP, On the origin of the mass gap for nonAbelian gauge theories in (2+1)-dimensions, Phys. Lett. B, 379, 141 (1996) · doi:10.1016/0370-2693(96)00422-4
[41] Karabali, D.; Nair, VP, Gauge invariance and mass gap in (2+1)-dimensional Yang-Mills theory, Int. J. Mod. Phys. A, 12, 1161 (1997) · Zbl 1161.81416 · doi:10.1142/S0217751X9700089X
[42] Karabali, D.; Kim, C-J; Nair, VP, On the vacuum wave function and string tension of Yang-Mills theories in (2+1)-dimensions, Phys. Lett. B, 434, 103 (1998) · doi:10.1016/S0370-2693(98)00751-5
[43] Nair, VP; Yelnikov, A., On the invariant measure for the Yang-Mills configuration space in (3+1)-dimensions, Nucl. Phys. B, 691, 182 (2004) · Zbl 1109.58303 · doi:10.1016/j.nuclphysb.2004.05.008
[44] Nair, VP, The Quantum Effective Action, Wave Functions and Yang-Mills (2+1), Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.105019
[45] R.P. Feynman, The Qualitative Behavior of Yang-Mills Theory in (2+1)-Dimensions, Nucl. Phys. B188 (1981) 479 [INSPIRE]. · Zbl 1243.81112
[46] Chandra, A.; Chevyrev, I.; Hairer, M.; Shen, H., Langevin dynamic for the 2D Yang-Mills measure, Science, 136, 1 (2022) · Zbl 1518.70029
[47] A. Chandra, I. Chevyrev, M. Hairer and H. Shen, Stochastic quantisation of Yang-Mills-Higgs in 3D, arXiv:2201.03487 [INSPIRE].
[48] G. Parisi and Y.-S. Wu, Perturbation Theory Without Gauge Fixing, Sci. Sin.24 (1981) 483 [INSPIRE]. · Zbl 1480.81051
[49] S.B. Myers, Riemannian manifolds in the large, Duke Math. J.1 (1935) 39. · Zbl 0011.22502
[50] S. Krug, The Yang-Mills Vacuum Wave Functional in 2+1 Dimensions, Ph.D. thesis, Universitat Auntónoma de Barcelona, Spain (2014) [arXiv:1404.7005] [INSPIRE]. · Zbl 1284.81211
[51] Krug, S.; Pineda, A., Yang-Mills vacuum wave functional in three dimensions at weak coupling, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.125001
[52] Freidel, L.; Leigh, RG; Minic, D., Towards a solution of pure Yang-Mills theory in 3+1 dimensions, Phys. Lett. B, 641, 105 (2006) · Zbl 1248.81116 · doi:10.1016/j.physletb.2006.08.030
[53] L. Freidel, On pure Yang-Mills theory in 3+1 dimensions: Hamiltonian, vacuum and gauge invariant variables, hep-th/0604185 [INSPIRE].
[54] S. Carl, V.K. Le and D. Motreanu, Nonsmooth variational problems and their inequalities: comparison principles and applications, Springer Monographs in Mathematics (2007) [doi:10.1007/978-0-387-46252-3]. · Zbl 1109.35004
[55] M.S. Narasimhan and T.R. Ramadas, Geometry of SU(2) gauge fields, Commun. Math. Phys.67 (1979) 121 [INSPIRE]. · Zbl 0418.53029
[56] D.M. Eardley and V. Moncrief, The global existence of Yang-Mills Higgs fields in four-dimensional Minkowski space. 1. Local existence and smoothness properties, Commun. Math. Phys.83 (1982) 171 [INSPIRE]. · Zbl 0496.35061
[57] D.M. Eardley and V. Moncrief, The global existence of Yang-Mills Higgs fields in four-dimensional Minkowski space. 2. Completion of proof, Commun. Math. Phys.83 (1982) 193 [INSPIRE]. · Zbl 0496.35062
[58] J. Ginibre and G. Velo, The Cauchy Problem for Coupled Yang-Mills and Scalar Fields in the Temporal Gauge, Commun. Math. Phys.82 (1981) 1 [INSPIRE]. · Zbl 0486.35048
[59] B. Hatfield, Quantum field theory of point particles and strings, CRC Press (2018) [INSPIRE]. · Zbl 0984.81501
[60] C.H. Taubes, Stability in Yang-Mills Theories, Commun. Math. Phys.91 (1983) 235 [INSPIRE]. · Zbl 0524.58020
[61] A.M. Jaffe and C.H. Taubes, Vortices and monopoles. Structure of static gauge theories, Birkhäuser Verlag (1980) [doi:10.1002/zamm.19820620624] [INSPIRE]. · Zbl 0457.53034
[62] G. ’t Hooft, A planar diagram theory for strong interactions, in E. Brezin and S.R. Wadia eds., The Large N Expansion In Quantum Field Theory And Statistical Physics: From Spin Systems to 2-Dimensional Gravity, World Scientific (1993), pp. 80-92 [doi:10.1142/9789814365802_0007].
[63] I.M. Singer, B. Wong, S.T. Yau and S.S.T Yau, An estimate of the gap of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci.12 (1985) 319. · Zbl 0603.35070
[64] P. Li and S.T. Yau, Estimates of eigenvalues of a compact Riemannian manifold, Proc. Symp. Pure. Math.36 (1980) 205. · Zbl 0441.58014
[65] E.H. Lieb, Bounds on the Eigenvalues of the Laplace and Schrodinger Operators, Print-76-0656 (Princeton) Bull. Am. Math. Soc.82 (1976) 751 [INSPIRE]. · Zbl 0329.35018
[66] E. de Faria and W. De Melo, Mathematical aspects of quantum field theory, in Cambridge Studies in Advanced Mathematics127, Cambridge university press (2010) [doi:10.1017/CBO9780511760532]. · Zbl 1200.81001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.