×

Variable exponent \(p(\cdot)\)-Kirchhoff type problem with convection in variable exponent Sobolev spaces. (English) Zbl 07805688

Summary: We establish the existence of weak solution for a class of \(p(x)\)-Kirchhoff type problem for the \(p(x)\)-Laplacian-like operator with Dirichlet boundary condition and with gradient dependence (convection) in the reaction term. Our result is obtained using the topological degree for a class of demicontinuous operators of generalized \((S_+)\) type and the theory of the variable exponent Sobolev spaces. Our results extend and generalize several corresponding results from the existing literature.

MSC:

35J93 Quasilinear elliptic equations with mean curvature operator
35J66 Nonlinear boundary value problems for nonlinear elliptic equations
35D30 Weak solutions to PDEs
47H11 Degree theory for nonlinear operators

References:

[1] E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164(3) (2002) 213-259. · Zbl 1038.76058
[2] E. Acerbi and G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math. 584 (2005) 117-148. · Zbl 1093.76003
[3] J. Berkovits, Extension of the Leray-Schauder degree for abstract Hammerstein type mappings, J. Differ. Equ. 234 (2007) 289-310. · Zbl 1114.47049
[4] G. Dai and R. Hao, Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math. Anal. Appl. 359 (2009) 275-284. · Zbl 1172.35401
[5] X.L. Fan and D. Zhao, On the Spaces L p(x) (Ω) and W m,p(x) (Ω), J. Math. Anal. Appl. 263 (2001) 424-446. · Zbl 1028.46041
[6] I. S. Kim and S. J. Hong, A topological degree for operators of generalized (S + ) type, Fixed Point Theory and Appl. 1 (2015) 1-16. · Zbl 1361.47018
[7] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
[8] O. Kováčik and J. Rákosník, On spaces L p(x) and W 1,p(x) , Czechoslovak Math. J. 41(4) (1991) 592-618. · Zbl 0784.46029
[9] E.C. Lapa, V.P. Rivera and J.Q. Broncano, No-flux boundary problems involving p(x)-Laplacian-like operators, Elec-tron. J. Diff. Equ. 2015(219) (2015) 1-10. · Zbl 1330.35190
[10] W.M. Ni and J. Serrin, Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Mat. Palermo (2) Suppl. 8 (1985) 171-185. · Zbl 0625.35028
[11] W.M. Ni and J. Serrin, Existence and non-existence theorems for ground states for quasilinear partial differential equations, Att. Conveg. Lincei. 77 (1986) 231-257.
[12] M.E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a Dirichlet problem governed by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic Parabol Equ. 7(1) (2021) 221-242. · Zbl 1472.35184
[13] M.E. Ouaarabi, C. Allalou and A. Abbassi, On the Dirichlet problem for some nonlinear degenerated elliptic equations with weight, 2021 7th International Conference on Optimization and Applications (ICOA). (2021) 1-6.
[14] M.E. Ouaarabi, A. Abbassi and C. Allalou, Existence result for a general nonlinear degenerate elliptic problems with measure datum in weighted Sobolev spaces, International Journal On Optimization and Applications 1(2) (2021) 1-9.
[15] M. E. Ouaarabi, A. Abbassi and C. Allalou, Existence and uniqueness of weak solution in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with measure data, International Journal of Nonlinear Analysis and Applications, 13(1) (2021) 2635-2653.
[16] V.D. Rǎdulescu and D.D. Repoveš, Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015). · Zbl 1343.35003
[17] M.A. Ragusa, A. Razani, and F. Safari, Existence of radial solutions for a p(x)-Laplacian Dirichlet problem, Adv. Differ. Equ. 2021(215) (2021). · Zbl 1494.35077
[18] M.A. Ragusa and A. Tachikawa, On continuity of minimizers for certain quadratic growth functionals, J. Math. Soc. Japan 57(3) (2005) 691-700. · Zbl 1192.49043
[19] M.A. Ragusa and A. Tachikawa, Regularity of Minimizers of some Variational Integrals with Discontinuity, Z. Anal. Anwend 27(4) (2008) 469-482. · Zbl 1153.49036
[20] K.R. Rajagopal and M. Ružička, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn. 13(1) (2001) 59-78. · Zbl 0971.76100
[21] M.M. Rodrigues, Multiplicity of solutions on a nonlinear eigenvalue problem for p(x)-Laplacian-like operators, Mediterr. J. Math. 9 (2012) 211-223. · Zbl 1245.35061
[22] Maria Alessandra Ragusa and Atsushi Tachikawa. Regularity for minimizers for functionals of double phase with variable exponents. Advances in Nonlinear Analysis, 9(1):710-728, 2020 · Zbl 1420.35145
[23] M. Ružička, Electrorheological fuids: modeling and mathematical theory, Springer Science & Business Media, 2000. Variable Exponent p(•)-Kirchhoff Type Problem with Convection 13
[24] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B, Springer-Verlag, New York, 1990. · Zbl 0684.47029
[25] V.V.E. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Ross. Akad. Nauk Ser. Mat. 50(4) (1986) 675-710.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.