×

A greedy sensor selection algorithm for hyperparameterized linear Bayesian inverse problems with correlated noise models. (English) Zbl 07797623

Summary: We consider optimal sensor placement for a family of linear Bayesian inverse problems characterized by a deterministic hyper-parameter. The hyper-parameter describes distinct configurations in which measurements can be taken of the observed physical system. To optimally reduce the uncertainty in the system’s model with a single set of sensors, the initial sensor placement needs to account for the non-linear state changes of all admissible configurations. We address this requirement through an observability coefficient which links the posteriors’ uncertainties directly to the choice of sensors. We propose a greedy sensor selection algorithm to iteratively improve the observability coefficient for all configurations through orthogonal matching pursuit. The algorithm allows explicitly correlated noise models even for large sets of candidate sensors, and remains computationally efficient for high-dimensional forward models through model order reduction. We demonstrate our approach on a large-scale geophysical model of the Perth Basin, and provide numerical studies regarding optimality and scalability with regard to classic optimal experimental design utility functions.

MSC:

65Nxx Numerical methods for partial differential equations, boundary value problems
35Qxx Partial differential equations of mathematical physics and other areas of application
65Cxx Probabilistic methods, stochastic differential equations

Software:

redbKIT; GemPy; MOOSE

References:

[1] Stuart, A. M., Inverse problems: a Bayesian perspective. Acta Numer., 451-559 (2010) · Zbl 1242.65142
[2] Bui-Thanh, T.; Ghattas, O., Bayes is optimal (2015), ICES Report 15
[3] Zellner, A., Optimal information processing and Bayes’s theorem. Am. Stat., 278-280 (1988)
[4] Stober, I.; Bucher Geothermie, K. (2012), Springer
[5] Ucinski, D., Optimal Measurement Methods for Distributed Parameter System Identification (2004), CRC Press
[6] Melas, V. B., Functional Approach to Optimal Experimental Design, vol. 184 (2006), Springer Science & Business Media · Zbl 1094.62086
[7] Pronzato, L., Optimal experimental design and some related control problems. Automatica, 303-325 (2008) · Zbl 1283.93154
[8] Attia, A.; Constantinescu, E., Optimal experimental design for inverse problems in the presence of observation correlations. SIAM J. Sci. Comput., A2808-A2842 (2022) · Zbl 07581111
[9] Aretz-Nellesen, N.; Chen, P.; Grepl, M. A.; Veroy, K., A sequential sensor selection strategy for hyper-parameterized linear Bayesian inverse problems, 489-497 · Zbl 1471.62435
[10] Hart, J.; Gulian, M.; Manickam, I.; Swiler, L. P., Solving high-dimensional inverse problems with auxiliary uncertainty via operator learning with limited data. J. Mach. Learn. Model. Comput. (2023)
[11] Kolehmainen, V.; Tarvainen, T.; Arridge, S. R.; Kaipio, J. P., Marginalization of uninteresting distributed parameters in inverse problems-application to diffuse optical tomography. Int. J. Uncertain. Quantificat. (2011) · Zbl 05949804
[12] Nicholson, R.; Petra, N.; Kaipio, J. P., Estimation of the Robin coefficient field in a Poisson problem with uncertain conductivity field. Inverse Probl. (2018) · Zbl 1404.65241
[13] Alexanderian, A.; Petra, N.; Stadler, G.; Sunseri, I., Optimal design of large-scale Bayesian linear inverse problems under reducible model uncertainty: good to know what you don’t know. SIAM/ASA J. Uncertain. Quantificat., 163-184 (2021) · Zbl 1460.62120
[14] Bartuska, A.; Espath, L.; Tempone, R., Small-noise approximation for Bayesian optimal experimental design with nuisance uncertainty. Comput. Methods Appl. Mech. Eng. (2022)
[15] Feng, C.; Marzouk, Y. M., A layered multiple importance sampling scheme for focused optimal Bayesian experimental design (2019), arXiv preprint
[16] Uciński, D., E-optimum sensor selection for estimation of subsets of parameters. Measurement (2022)
[17] Koval, K.; Alexanderian, A.; Stadler, G., Optimal experimental design under irreducible uncertainty for linear inverse problems governed by PDEs. Inverse Probl. (2020) · Zbl 1443.62213
[18] Aretz-Nellesen, N.; Grepl, M. A.M.; Veroy, K., 3D-VAR for parameterized partial differential equations: a certified reduced basis approach. Adv. Comput. Math., 2369-2400 (2019) · Zbl 1434.49019
[19] Binev, P.; Cohen, A.; Mula, O.; Nichols, J., Greedy algorithms for optimal measurements selection in state estimation using reduced models. SIAM/ASA J. Uncertain. Quantificat., 1101-1126 (2018) · Zbl 1407.65256
[20] Maday, Y.; Patera, A. T.; Penn, J. D.; Yano, M., A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics. Int. J. Numer. Methods Eng., 933-965 (2015) · Zbl 1352.65529
[21] Barrault, M.; Maday, Y.; Nguyen, N. C.; Patera, A. T., An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math., 667-672 (2004) · Zbl 1061.65118
[22] Maday, Y.; Mula, O., A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, 221-235 · Zbl 1267.62013
[23] Alexanderian, A.; Gloor, P. J.; Ghattas, O., On Bayesian A- and D-optimal experimental designs in infinite dimensions. Bayesian Anal., 671-695 (2016) · Zbl 1359.62315
[24] Alexanderian, A.; Petra, N.; Stadler, G.; Ghattas, O., A-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems with regularized ﹨ell_0-sparsification. SIAM J. Sci. Comput., A2122-A2148 (2014) · Zbl 1314.62163
[25] Attia, A.; Alexanderian, A.; Saibaba, A. K., Goal-oriented optimal design of experiments for large-scale Bayesian linear inverse problems. Inverse Probl. (2018) · Zbl 1475.65037
[26] Alexanderian, A.; Saibaba, A. K., Efficient D-optimal design of experiments for infinite-dimensional Bayesian linear inverse problems. SIAM J. Sci. Comput., A2956-A2985 (2018) · Zbl 1401.62123
[27] Wu, K.; Chen, P.; Ghattas, O., An offline-online decomposition method for efficient linear Bayesian goal-oriented optimal experimental design: Application to optimal sensor placement. SIAM J. Sci. Comput., B57-B77 (2023) · Zbl 1541.62197
[28] Alexanderian, A., Optimal experimental design for infinite-dimensional Bayesian inverse problems governed by PDEs: a review. Inverse Probl. (2021) · Zbl 1461.62129
[29] Alexanderian, A.; Petra, N.; Stadler, G.; Ghattas, O., A fast and scalable method for A-optimal design of experiments for infinite-dimensional Bayesian nonlinear inverse problems. SIAM J. Sci. Comput., A243-A272 (2016) · Zbl 06536072
[30] Huan, X.; Marzouk, Y. M., Simulation-based optimal Bayesian experimental design for nonlinear systems. J. Comput. Phys., 288-317 (2013)
[31] Wu, K.; Chen, P.; Ghattas, O., A fast and scalable computational framework for large-scale and high-dimensional Bayesian optimal experimental design. SIAM/AMS J. Uncertain. Quantificat., 235-261 (2023) · Zbl 1514.62153
[32] Wu, K.; O’Leary-Roseberry, T.; Chen, P.; Ghattas, O., Large-scale Bayesian optimal experimental design with derivative-informed projected neural network. J. Sci. Comput., 30 (2023) · Zbl 1519.35348
[33] Bui-Thanh, T.; Ghattas, O.; Martin, J.; Stadler, G., A computational framework for infinite-dimensional Bayesian inverse problems part I: the linearized case, with application to global seismic inversion. SIAM J. Sci. Comput., A2494-A2523 (2013) · Zbl 1287.35087
[34] Cui, T.; Marzouk, Y.; Willcox, K., Scalable posterior approximations for large-scale Bayesian inverse problems via likelihood-informed parameter and state reduction. J. Comput. Phys., 363-387 (2016) · Zbl 1349.65189
[35] Parente, M. T.; Wallin, J.; Wohlmuth, B., Generalized bounds for active subspaces. Electron. J. Stat., 917-943 (2020) · Zbl 1434.60059
[36] Lieberman, C.; Willcox, K.; Ghattas, O., Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput., 2523-2542 (2010) · Zbl 1217.65123
[37] Chen, P.; Ghattas, O., Hessian-based sampling for high-dimensional model reduction. Int. J. Uncertain. Quantificat. (2019) · Zbl 1498.62106
[38] Chen, P.; Wu, K.; Chen, J.; O’Leary-Roseberry, T.; Ghattas, O., Projected Stein variational Newton: a fast and scalable Bayesian inference method in high dimensions. NeurIPS (2019)
[39] Chen, P.; Ghattas, O., Projected Stein variational gradient descent
[40] Zahm, O.; Cui, T.; Law, K.; Spantini, A.; Marzouk, Y., Certified dimension reduction in nonlinear Bayesian inverse problems. Math. Comput., 1789-1835 (2022) · Zbl 07541892
[41] Qian, E.; Grepl, M.; Veroy, K.; Willcox, K., A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput., S434-S460 (2017) · Zbl 1377.35078
[42] Chen, P., Model order reduction techniques for uncertainty quantification problems (2014), Technical Report
[43] Chen, P.; Quarteroni, A.; Rozza, G., Reduced basis methods for uncertainty quantification. SIAM/ASA J. Uncertain. Quantificat., 813-869 (2017) · Zbl 1400.65010
[44] O’Leary-Roseberry, T.; Villa, U.; Chen, P.; Ghattas, O., Derivative-informed projected neural networks for high-dimensional parametric maps governed by PDEs. Comput. Methods Appl. Mech. Eng. (2022)
[45] O’Leary-Roseberry, T.; Chen, P.; Villa, U.; Ghattas, O., Derivate informed neural operator: an efficient framework for high-dimensional parametric derivative learning (2022)
[46] Nagel, J. B., Bayesian techniques for inverse uncertainty quantification. IBK Ber. (2019)
[47] Da Prato, G., An Introduction to Infinite-Dimensional Analysis (2006), Springer Science & Business Media · Zbl 1109.46001
[48] Cui, T.; Marzouk, Y. M.; Willcox, K. E., Data-driven model reduction for the Bayesian solution of inverse problems. Int. J. Numer. Methods Eng., 966-990 (2015) · Zbl 1352.65445
[49] Bui-Thanh, T.; Willcox, K.; Ghattas, O., Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput., 3270-3288 (2008) · Zbl 1196.37127
[50] Schwab, C.; Stevenson, R., Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput., 1293-1318 (2009) · Zbl 1198.65249
[51] Long, Q.; Scavino, M.; Tempone, R.; Wang, S., Fast estimation of expected information gains for Bayesian experimental designs based on Laplace approximations. Comput. Methods Appl. Mech. Eng., 24-39 (2013) · Zbl 1286.62068
[52] Aretz, N., Data Assimilation and Sensor selection for Configurable Forward Models: Challenges and Opportunities for Model Order Reduction Methods (2022), RWTH Aachen University, Ph.D. thesis
[53] Kirk, D. E., Optimal Control Theory: an Introduction (2004), Courier Corporation
[54] Yano, M.; Penn, J. D.; Patera, A. T., A model-data weak formulation for simultaneous estimation of state and model bias. C. R. Math., 937-941 (2013) · Zbl 1281.65148
[55] Cohen, A.; Dahmen, W.; DeVore, R.; Fadili, J.; Mula, O.; Nichols, J., Optimal reduced model algorithms for data-based state estimation. SIAM J. Numer. Anal., 3355-3381 (2020) · Zbl 1458.65121
[56] Benner, P.; Gugercin, S.; Willcox, K., A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev., 483-531 (2015) · Zbl 1339.37089
[57] Schilders, W. H.A.; Van der Vorst, H. A.; Rommes, J., Model Order Reduction: Theory, Research Aspects and Applications, vol. 13 (2008), Springer
[58] Hesthaven, J. S.; Rozza, G.; Stamm, B., Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590 (2016), Springer · Zbl 1329.65203
[59] Quarteroni, A.; Manzoni, A.; Negri, F., Reduced Basis Methods for Partial Differential Equations: an Introduction, vol. 92 (2015), Springer
[60] Haasdonk, B., Reduced basis methods for parametrized PDEs-a tutorial introduction for stationary and instationary problems, 65
[61] Binev, P.; Cohen, A.; Dahmen, W.; DeVore, R.; Petrova, G.; Wojtaszczyk, P., Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal., 1457-1472 (2011) · Zbl 1229.65193
[62] Buffa, A.; Maday, Y.; Patera, A. T.; Prud’homme, C.; Turinici, G., A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: Math. Model. Numer. Anal.. Modélisation Mathématique et Analyse Numérique, 595-603 (2012) · Zbl 1272.65084
[63] Jagalur-Mohan, J.; Marzouk, Y. M., Batch greedy maximization of non-submodular functions: guarantees and applications to experimental design. J. Mach. Learn. Res., 251-252 (2021) · Zbl 07626767
[64] Eftang, J. L.; Patera, A. T.; Rønquist, E. M., An “hp” certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput., 3170-3200 (2010) · Zbl 1228.35097
[65] Eftang, J. L.; Knezevic, D. J.; Patera, A. T., An hp certified reduced basis method for parametrized parabolic partial differential equations. Math. Comput. Model. Dyn. Syst., 395-422 (2011) · Zbl 1302.65223
[66] Golub, G. H.; Van Loan, C. F., Matrix Computations, vol. 3 (2013), JHU Press
[67] Regenauer-Lieb, K.; Horowitz, F., The Perth Basin geothermal opportunity. Pet. West. Aust. (2007)
[68] Corbel, S.; Schilling, O.; Horowitz, F. G.; Reid, L. B.; Sheldon, H. A.; Timms, N. E.; Wilkes, P., Identification and geothermal influence of faults in the Perth metropolitan area, Australia
[69] Sheldon, H. A.; Florio, B.; Trefry, M. G.; Reid, L. B.; Ricard, L. P.; Ghori, K. A.R., The potential for convection and implications for geothermal energy in the Perth Basin, Western Australia. Hydrogeol. J., 1251-1268 (2012)
[70] Schilling, O.; Sheldon, H. A.; Reid, L. B.; Corbel, S., Hydrothermal models of the Perth metropolitan area, Western Australia: implications for geothermal energy. Hydrogeol. J., 605-621 (2013)
[71] Pujol, M.; Ricard, L. P.; Bolton, G., 20 years of exploitation of the Yarragadee aquifer in the Perth Basin of Western Australia for direct-use of geothermal heat. Geothermics, 39-55 (2015)
[72] Wellmann, J. F.; Reid, L. B., Basin-scale geothermal model calibration: experience from the Perth Basin, Australia. Energy Proc., 382-389 (2014)
[73] Degen, D.; Veroy, K.; Wellmann, F., Certified reduced basis method in geosciences. Comput. Geosci., 241-259 (2020) · Zbl 1434.86002
[74] Degen, D. M., Application of the reduced basis method in geophysical simulations: concepts, implementation, advantages, and limitations (2020), RWTH Aachen University, Dissertation
[75] Bauer, M.; Freeden, W.; Jacobi, H.; Neu, T., Handbuch Tiefe Geothermie (2014), Springer
[76] Freymark, J.; Sippel, J.; Scheck-Wenderoth, M.; Bär, K.; Stiller, M.; Fritsche, J.-G.; Kracht, M., The deep thermal field of the upper Rhine graben. Tectonophysics, 114-129 (2017)
[77] Degen, D.; Veroy, K.; Freymark, J.; Scheck-Wenderoth, M.; Poulet, T.; Wellmann, F., Global sensitivity analysis to optimize basin-scale conductive model calibration-a case study from the upper Rhine graben. Geothermics (2021)
[78] de la Varga, M.; Schaaf, A.; Wellmann, F., GemPy 1.0: open-source stochastic geological modeling and inversion. Geosci. Model Dev., 1-32 (2019)
[79] Permann, C. J.; Gaston, D. R.; Andrš, D.; Carlsen, R. W.; Kong, F.; Lindsay, A. D.; Miller, J. M.; Peterson, J. W.; Slaughter, A. E.; Stogner, R. H., MOOSE: enabling massively parallel multiphysics simulation. SoftwareX (2020)
[80] Dahmen, W.; Plesken, C.; Welper, G., Double greedy algorithms: reduced basis methods for transport dominated problems. ESAIM: Math. Model. Numer. Anal.. Modélisation Mathématique et Analyse Numérique, 623-663 (2014) · Zbl 1291.65339
[81] Deming, D., Application of bottom-hole temperature corrections in geothermal studies. Geothermics, 775-786 (1989)
[82] Vivas, C.; Salehi, S.; Tuttle, J. D.; Rickard, B., Challenges and opportunities of geothermal drilling for renewable energy generation. GRC Trans., 904-918 (2020)
[83] Cressie, N., The origins of Kriging. Math. Geol., 239-252 (1990) · Zbl 0964.86511
[84] Holgate, F. L.; Gerner, E. J., OzTemp Well temperature data (2010), Geoscience Australia, Catalogue
[85] Maday, Y.; Anthony, T.; Penn, J. D.; Yano, M., PBDW state estimation: noisy observations; configuration-adaptive background spaces; physical interpretations. ESAIM Proc. Surv., 144-168 (2015) · Zbl 1342.82116
[86] Taddei, T., Model order reduction methods for data assimilation: state estimation and structural health monitoring (2017), Massachusetts Institute of Technology, Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.