×

Convergence rate in \(\mathcal{L}^p\) sense of tamed EM scheme for highly nonlinear neutral multiple-delay stochastic McKean-Vlasov equations. (English) Zbl 07797194

Summary: This paper focuses on the numerical scheme of highly nonlinear neutral multiple-delay stochastic McKean-Vlasov equation (NMSMVE) by virtue of the stochastic particle method. First, under general assumptions, the results about propagation of chaos in \(\mathcal{L}^p\) sense are revealed, where the convergence rate loses a little due to the proof technique. Then the tamed Euler-Maruyama scheme to the corresponding particle system is established and the convergence rate in \(\mathcal{L}^p\) sense is obtained. Furthermore, combining these two results gives the convergence error in \(\mathcal{L}^p\) sense between the objective NMSMVE and numerical approximation, which is related to the particle number and step size. Finally, two numerical examples are provided to support the finding.

MSC:

60Hxx Stochastic analysis
65Cxx Probabilistic methods, stochastic differential equations
34Kxx Functional-differential equations (including equations with delayed, advanced or state-dependent argument)

References:

[1] Buckdahn, R.; Li, J.; Ma, J., A mean-field stochastic control problem with partial observations. Ann. Appl. Probab., 5, 3201-3245 (2017) · Zbl 1380.93282
[2] Carmona, R.; Delarue, F.
[3] Wen, J.; Wang, X.; Mao, S.; Xiao, X., Maximum likelihood estimation of McKean-Vlasov stochastic differential equation and its application. Appl. Math. Comput., 237-246 (2016) · Zbl 1410.62160
[4] McKean, H. P., A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci., 6, 1907-1911 (1966) · Zbl 0149.13501
[5] McKean, H. P., Fluctuations in the kinetic theory of gases. Comm. Pure Appl. Math., 4, 435-455 (1975)
[6] McKean, H. P., Propagation of chaos for a class of non-linear parabolic equations. Lect. Ser. Differ. Equ., 41-57 (1967)
[7] Kac, M., Foundations of Kinetic Theory. Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954-1955, III, 171-197 (1956), University of California Press: University of California Press Berkeley and Los Angeles · Zbl 0072.42802
[8] Reis, G. D.; Salkeld, W.; Tugaut, J., Freidlin-Wentzell LDP in path space for McKean-Vlasov equations and the functional iterated logarithm law. Ann. Appl. Probab., 3, 1487-1540 (2019) · Zbl 1466.60056
[9] Sznitman, A. S., Topics in Propagation of Chaos (1991), Springer: Springer Berlin, Heidelberg · Zbl 0732.60114
[10] Wang, F. Y., Distribution dependent SDEs for Landau type equations. Stochastic Process. Appl., 2, 595-621 (2018) · Zbl 1380.60077
[11] Fan, X.; Huang, X.; Suo, Y.; Yuan, C., Distribution dependent SDEs driven by fractional Brownian motions. Stochastic Process. Appl., 23-67 (2022) · Zbl 1492.60166
[12] Huang, X.; Ren, P.; Wang, F. Y., Distribution dependent stochastic differential equations. Front. Math. China, 2, 257-301 (2021) · Zbl 1475.60033
[13] Huang, X.; Wang, F. Y., Distribution dependent SDEs with singular coefficients. Stochastic Process. Appl., 11, 4747-4770 (2019) · Zbl 1433.60034
[14] Röckner, M.; Zhang, X., Well-posedness of distribution dependent SDEs with singular drifts. Bernoulli, 2, 1131-1158 (2021) · Zbl 1480.60171
[15] Shao, J.; Wei, D., Propagation of chaos and conditional McKean-Vlasov SDEs with regime-switching. Front. Math. China, 1-16 (2021)
[16] Wu, H.; Hu, J.; Gao, S.; Yuan, C., Stabilization of stochastic McKean-Vlasov equations with feedback control based on discrete-time state observation. SIAM J. Control Optim., 5, 2884-2901 (2022) · Zbl 1498.60242
[17] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients. Proc. R. Soc. A, 2130, 1563-1576 (2011) · Zbl 1228.65014
[18] Chassagneux, J. F.; Jacquier, A.; Mihaylov, I., An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM J. Financial Math., 1, 993-1021 (2016) · Zbl 1355.60072
[19] Hutzenthaler, M.; Jentzen, A.; Kloeden, P. E., Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients. Ann. Appl. Probab., 4, 1611-1641 (2012) · Zbl 1256.65003
[20] Sabanis, S., A note on tamed Euler approximations. Electron. Commun. Probab., 1-10 (2013) · Zbl 1329.60237
[21] Reis, G. D.; Engelhardt, S.; Smith, G., Simulation of McKean-Vlasov SDEs with super-linear growth. IMA J. Numer. Anal., 1, 874-922 (2022) · Zbl 1481.65020
[22] Bao, J.; Reisinger, C.; Ren, P.; Stockinger, W., First-order convergence of Milstein schemes for McKean-Vlasov equations and interacting particle systems. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 2245 (2021)
[23] Kumar, C.; Neelima; Reisinger, C.; Stockinger, W., Well-posedness and tamed schemes for McKean-Vlasov equations with common noise. Ann. Appl. Probab., 3283-3330 (2022) · Zbl 1498.60288
[24] Bao, J.; Reisinger, C.; Ren, P.; Stockinger, W., Milstein schemes and antithetic multi-level Monte-Carlo sampling for delay McKean-Vlasov equations and interacting particle systems (2020), arXiv preprint, arXiv:2005.01165
[25] Huang, X.; Wang, X., Path dependent McKean-Vlasov SDEs with Hölder continuous diffusion. Discrete Contin. Dyn. Syst. Ser. S, 5, 982-998 (2023) · Zbl 1515.60193
[26] Neelima; Biswas, S.; Kumar, C.; Reis, G. D.; Reisinger, C., Well-posedness and tamed Euler schemes for McKean-Vlasov equations driven by Lev́y noise (2020), arXiv preprint, arXiv:2010.08585
[27] Ren, P.; Wu, J. L., Least squares estimator for path-dependent McKean-Vlasov SDEs via discrete-time observations. Acta Math. Sci. Ser. B, 3, 691-716 (2019) · Zbl 1499.62287
[28] Cui, Y.; Li, X.; Liu, Y.; Yuan, C., Explicit numerical approximations for McKean-Vlasov neutral stochastic differential delay equations. Discrete Contin. Dyn. Syst. Ser. S, 5, 1111-1141 (2023) · Zbl 1514.65009
[29] Deng, S.; Fei, C.; Fei, W.; Mao, X., Tamed EM schemes for neutral stochastic differential delay equations with superlinear diffusion coefficients. J. Comput. Appl. Math. (2021) · Zbl 1460.34101
[30] Ji, Y.; Yuan, C., Tamed EM scheme of neutral stochastic differential delay equations. J. Comput. Appl. Math., 337-357 (2017) · Zbl 1370.65002
[31] Li, X.; Cao, W., On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations. Appl. Math. Comput., 373-381 (2015) · Zbl 1410.34218
[32] Tan, L., Almost sure convergence rate of theta-EM scheme for neutral SDDEs. J. Comput. Appl. Math., 25-36 (2018) · Zbl 1391.65024
[33] Tan, L.; Yuan, C., Strong convergence of a tamed theta scheme for NSDDEs with one-sided Lipschitz drift. Appl. Math. Comput., 607-623 (2018) · Zbl 1427.65010
[34] Bao, J.; Yuan, C., Convergence rate of EM scheme for SDDEs. Proc. Amer. Math. Soc., 9, 3231-3243 (2013) · Zbl 1277.65006
[35] Wu, F.; Mao, X.; Chen, K., The Cox-Ingersoll-Ross model with delay and strong convergence of its Euler-Maruyama approximate solutions. Appl. Numer. Math., 10, 2641-2658 (2009) · Zbl 1172.65009
[36] Ahlborn, A.; Parlitz, U., Stabilizing unstable steady states using multiple delay feedback control. Phys. Rev. Lett., 26 (2004)
[37] Fei, C.; Fei, W.; Mao, X.; Shen, M.; Yan, L., Stability analysis of highly nonlinear hybrid multiple-delay stochastic differential equations. J. Appl. Anal. Comput., 3, 1053-1070 (2019) · Zbl 1459.60122
[38] Li, X.; Zhu, Q.; O’Regan, D., \(pTh\) Moment exponential stability of impulsive stochastic functional differential equations and application to control problems of NNs. J. Franklin Inst., 9, 4435-4456 (2014) · Zbl 1395.93566
[39] Rathinasamy, A.; Balachandran, K., Mean square stability of semi-implicit Euler method for linear stochastic differential equations with multiple delays and Markovian switching. Appl. Math. Comput., 2, 968-979 (2008) · Zbl 1159.65011
[40] Bao, J.; Huang, X., Approximations of McKean-Vlasov stochastic differential equations with irregular coefficients. J. Theoret. Probab., 2, 1187-1215 (2022) · Zbl 1493.65018
[41] Li, Y.; Mao, X.; Song, Q.; Wu, F.; Yin, G., Strong convergence of Euler-Maruyama schemes for McKean-Vlasov stochastic differential equations under local Lipschitz conditions of state variables. IMA J. Numer. Anal. (2022)
[42] Fournier, N.; Guillin, A., On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields, 3, 707-738 (2015) · Zbl 1325.60042
[43] Tan, L.; Yuan, C., Convergence rates of theta-method for NSDDEs under non-globally Lipschitz continuous coefficients. Bull. Math. Sci., 03 (2019) · Zbl 07365323
[44] Bossy, M.; Talay, D., A stochastic particle method for the McKean-Vlasov and the Burgers equation. Math. Comp., 217, 157-192 (1997) · Zbl 0854.60050
[45] Bossy, M.; Talay, D., Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation. Ann. Appl. Probab., 3, 818-861 (1996) · Zbl 0860.60038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.