×

Multisource invasion percolation on the complete graph. (English) Zbl 07795618

Summary: We consider invasion percolation on the complete graph \(K_n\), started from some number \(k(n)\) of distinct source vertices. The outcome of the process is a forest consisting of \(k(n)\) trees, each containing exactly one source. Let \(M_n\) be the size of the largest tree in this forest. Logan, Molloy and Pralat (2018) proved that if \(k(n) / n^{1/3} \to 0\) then \(M_n / n \to 1\) in probability. In this paper, we prove a complementary result: if \(k(n) / n^{1/3} \to \infty\), then \(M_n / n \to 0\) in probability. This establishes the existence of a phase transition in the structure of the invasion percolation forest around \(k(n) \asymp n^{1/3}\).
Our arguments rely on the connection between invasion percolation and critical percolation, and on a coupling between multisource invasion percolation with differently-sized source sets. A substantial part of the proof is devoted to showing that, with high probability, a certain fragmentation process on large random binary trees leaves no components of macroscopic size.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60C05 Combinatorial probability
05C80 Random graphs (graph-theoretic aspects)
82B43 Percolation
82C43 Time-dependent percolation in statistical mechanics

References:

[1] ADDARIO-BERRY, L. (2013). The local weak limit of the minimum spanning tree of the complete graph. Available at arXiv:1301.1667 [math.PR].
[2] ADDARIO-BERRY, L., BRANDENBERGER, A., HAMDAN, J. and KERRIOU, C. (2022). Universal height and width bounds for random trees. Electron. J. Probab. 27 118. Digital Object Identifier: 10.1214/22-ejp842 Google Scholar: Lookup Link MathSciNet: MR4479914 · Zbl 1507.60017 · doi:10.1214/22-ejp842
[3] ADDARIO-BERRY, L., BROUTIN, N. and GOLDSCHMIDT, C. (2010). Critical random graphs: Limiting constructions and distributional properties. Electron. J. Probab. 15 741-775. Digital Object Identifier: 10.1214/EJP.v15-772 Google Scholar: Lookup Link MathSciNet: MR2650781 · Zbl 1227.05224 · doi:10.1214/EJP.v15-772
[4] ADDARIO-BERRY, L., BROUTIN, N. and GOLDSCHMIDT, C. (2012). The continuum limit of critical random graphs. Probab. Theory Related Fields 152 367-406. Digital Object Identifier: 10.1007/s00440-010-0325-4 Google Scholar: Lookup Link MathSciNet: MR2892951 · Zbl 1239.05165 · doi:10.1007/s00440-010-0325-4
[5] ADDARIO-BERRY, L., BROUTIN, N., GOLDSCHMIDT, C. and MIERMONT, G. (2017). The scaling limit of the minimum spanning tree of the complete graph. Ann. Probab. 45 3075-3144. Digital Object Identifier: 10.1214/16-AOP1132 Google Scholar: Lookup Link MathSciNet: MR3706739 · Zbl 1407.60013 · doi:10.1214/16-AOP1132
[6] ADDARIO-BERRY, L., BROUTIN, N. and HOLMGREN, C. (2014). Cutting down trees with a Markov chainsaw. Ann. Appl. Probab. 24 2297-2339. Digital Object Identifier: 10.1214/13-AAP978 Google Scholar: Lookup Link MathSciNet: MR3262504 · Zbl 1352.60009 · doi:10.1214/13-AAP978
[7] ADDARIO-BERRY, L., GRIFFITHS, S. and KANG, R. J. (2012). Invasion percolation on the Poisson-weighted infinite tree. Ann. Appl. Probab. 22 931-970. Digital Object Identifier: 10.1214/11-AAP761 Google Scholar: Lookup Link MathSciNet: MR2977982 · Zbl 1262.60091 · doi:10.1214/11-AAP761
[8] ADDARIO-BERRY, L. and SEN, S. (2021). Geometry of the minimal spanning tree of a random 3-regular graph. Probab. Theory Related Fields 180 553-620. Digital Object Identifier: 10.1007/s00440-021-01071-3 Google Scholar: Lookup Link MathSciNet: MR4288328 · Zbl 1484.60006 · doi:10.1007/s00440-021-01071-3
[9] Aldous, D. (1991). The continuum random tree. I. Ann. Probab. 19 1-28. MathSciNet: MR1085326 · Zbl 0722.60013
[10] Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 812-854. Digital Object Identifier: 10.1214/aop/1024404421 Google Scholar: Lookup Link MathSciNet: MR1434128 · doi:10.1214/aop/1024404421
[11] Aldous, D. and Steele, J. M. (2004). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures. Encyclopaedia Math. Sci. 110 1-72. Springer, Berlin. Digital Object Identifier: 10.1007/978-3-662-09444-0_1 Google Scholar: Lookup Link MathSciNet: MR2023650 · Zbl 1037.60008 · doi:10.1007/978-3-662-09444-0_1
[12] Aldous, D. J. (1985). Exchangeability and related topics. In École d’été de Probabilités de Saint-Flour, XIII—1983. Lecture Notes in Math. 1117 1-198. Springer, Berlin. Digital Object Identifier: 10.1007/BFb0099421 Google Scholar: Lookup Link MathSciNet: MR0883646 · Zbl 0549.00022 · doi:10.1007/BFb0099421
[13] ANGEL, O., GOODMAN, J., DEN HOLLANDER, F. and SLADE, G. (2008). Invasion percolation on regular trees. Ann. Probab. 36 420-466. Digital Object Identifier: 10.1214/07-AOP346 Google Scholar: Lookup Link MathSciNet: MR2393988 · Zbl 1145.60050 · doi:10.1214/07-AOP346
[14] ANGEL, O., GOODMAN, J. and MERLE, M. (2013). Scaling limit of the invasion percolation cluster on a regular tree. Ann. Probab. 41 229-261. Digital Object Identifier: 10.1214/11-AOP731 Google Scholar: Lookup Link MathSciNet: MR3059198 · Zbl 1281.60076 · doi:10.1214/11-AOP731
[15] BHAMIDI, S. and SEN, S. (2020). Geometry of the vacant set left by random walk on random graphs, Wright’s constants, and critical random graphs with prescribed degrees. Random Structures Algorithms 56 676-721. Digital Object Identifier: 10.1002/rsa.20880 Google Scholar: Lookup Link MathSciNet: MR4084187 · Zbl 1445.05096 · doi:10.1002/rsa.20880
[16] BHAMIDI, S., VAN DER HOFSTAD, R. and SEN, S. (2018). The multiplicative coalescent, inhomogeneous continuum random trees, and new universality classes for critical random graphs. Probab. Theory Related Fields 170 387-474. Digital Object Identifier: 10.1007/s00440-017-0760-6 Google Scholar: Lookup Link MathSciNet: MR3748328 · Zbl 1384.05138 · doi:10.1007/s00440-017-0760-6
[17] CHANDLER, R., KOPLIK, J., LERMAN, K. and WILLEMSEN, J. F. (1982). Capillary displacement and percolation in porous media. J. Fluid Mech. 119 249-267. · Zbl 0491.76090
[18] DAMRON, M. and SAPOZHNIKOV, A. (2012). Limit theorems for 2D invasion percolation. Ann. Probab. 40 893-920. Digital Object Identifier: 10.1214/10-AOP641 Google Scholar: Lookup Link MathSciNet: MR2962082 · Zbl 1251.60071 · doi:10.1214/10-AOP641
[19] GARBAN, C., PETE, G. and SCHRAMM, O. (2018). The scaling limits of the minimal spanning tree and invasion percolation in the plane. Ann. Probab. 46 3501-3557. Digital Object Identifier: 10.1214/17-AOP1252 Google Scholar: Lookup Link MathSciNet: MR3857861 · Zbl 1426.60117 · doi:10.1214/17-AOP1252
[20] GARBAN, C., PETE, G. and SCHRAMM, O. (2018). The scaling limits of near-critical and dynamical percolation. J. Eur. Math. Soc. (JEMS) 20 1195-1268. Digital Object Identifier: 10.4171/JEMS/786 Google Scholar: Lookup Link MathSciNet: MR3790067 · Zbl 1392.60078 · doi:10.4171/JEMS/786
[21] KRUSKAL, J. B. JR. (1956). On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7 48-50. Digital Object Identifier: 10.2307/2033241 Google Scholar: Lookup Link MathSciNet: MR0078686 · Zbl 0070.18404 · doi:10.2307/2033241
[22] LOGAN, A., MOLLOY, M. and PRALAT, P. (2018). A variant of the Erdos-Renyi random graph process. Available at arXiv:1806.10975 [math.CO]. · Zbl 1522.05437
[23] ŁUCZAK, T. (1990). Component behavior near the critical point of the random graph process. Random Structures Algorithms 1 287-310. Digital Object Identifier: 10.1002/rsa.3240010305 Google Scholar: Lookup Link MathSciNet: MR1099794 · Zbl 0745.05048 · doi:10.1002/rsa.3240010305
[24] MCDIARMID, C., JOHNSON, T. and STONE, H. S. (1997). On finding a minimum spanning tree in a network with random weights 10 187-204. Digital Object Identifier: 10.1002/(SICI)1098-2418(199701/03)10:1/2<187::AID-RSA10>3.3.CO;2-Y Google Scholar: Lookup Link MathSciNet: MR1611522 · Zbl 0872.60008 · doi:10.1002/(SICI)1098-2418(199701/03)10:1/2<187::AID-RSA10>3.3.CO;2-Y
[25] MICHELEN, M., PEMANTLE, R. and ROSENBERG, J. (2019). Invasion percolation on Galton-Watson trees. Electron. J. Probab. 24 31. Digital Object Identifier: 10.1214/19-EJP281 Google Scholar: Lookup Link MathSciNet: MR3940761 · Zbl 1466.60211 · doi:10.1214/19-EJP281
[26] NEWMAN, C. M. and STEIN, D. L. (1995). Random walk in a strongly inhomogeneous environment and invasion percolation. Ann. Inst. Henri Poincaré Probab. Stat. 31 249-261. MathSciNet: MR1340039 · Zbl 0817.60097
[27] NEWMAN, C. M. and STEIN, D. L. (1996). Ground-state structure in a highly disordered spin-glass model. J. Stat. Phys. 82 1113-1132. Digital Object Identifier: 10.1007/BF02179805 Google Scholar: Lookup Link MathSciNet: MR1372437 · Zbl 1042.82568 · doi:10.1007/BF02179805
[28] NICKEL, B. and WILKINSON, D. (1983). Invasion percolation on the Cayley tree: Exact solution of a modified percolation model. Phys. Rev. Lett. 51 71-74. Digital Object Identifier: 10.1103/PhysRevLett.51.71 Google Scholar: Lookup Link MathSciNet: MR0708864 · doi:10.1103/PhysRevLett.51.71
[29] PRIM, R. C. (1957). Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36 1389-1401.
[30] STARK, C. P. (1991). An invasion percolation model of drainage network evolution. Nature 352 423-425.
[31] VAN DEN BERG, J., JÁRAI, A. A. and VÁGVÖLGYI, B. (2007). The size of a pond in 2D invasion percolation. Electron. Commun. Probab. 12 411-420. Digital Object Identifier: 10.1214/ECP.v12-1327 Google Scholar: Lookup Link MathSciNet: MR2350578 · Zbl 1128.60087 · doi:10.1214/ECP.v12-1327
[32] WILKINSON, D. and WILLEMSEN, J. F. (1983). Invasion percolation: A new form of percolation theory. J. Phys. A 16 3365-3376. MathSciNet: MR0725616
[33] ZHANG, Y. (1995). The fractal volume of the two-dimensional invasion percolation cluster. Comm. Math. Phys. 167 237-254. MathSciNet: MR1316507 · Zbl 0811.60095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.