×

Convergence and analytic decomposition of quantum cohomology of toric bundles. (English) Zbl 07794559

Summary: We prove that the equivariant big quantum cohomology \(Q H_T^\ast(E)\) of the total space \(E\) of a toric bundle \(E \to B\) converges provided that the big quantum cohomology \(Q H^\ast(B)\) converges. The proof is based on Brown’s mirror theorem for toric bundles [5]. It has been observed by Coates, Givental and Tseng that the quantum connection of \(E\) splits into copies of that of \(B\)[10]. Under the assumption that \(Q H^\ast(B)\) is convergent, we construct a decomposition of the quantum \(D\)-module of \(E\) into a direct sum of that of \(B\), which is analytic with respect to parameters of \(Q H_T^\ast(E)\). In particular, we obtain an analytic decomposition for the equivariant/non-equivariant big quantum cohomology of \(E\).

MSC:

14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
14M25 Toric varieties, Newton polyhedra, Okounkov bodies

References:

[1] Atiyah, M. F.; Bott, R., The moment map and equivariant cohomology. Topology, 1, 1-28 (1984) · Zbl 0521.58025
[2] Audin, M., Torus Actions on Symplectic Manifolds. Progress in Mathematics (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1062.57040
[3] Barannikov, S., Semi-infinite Hodge structures and mirror symmetry for projective spaces, available at · Zbl 1304.58003
[4] Berline, N.; Vergne, M., Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante. C. R. Acad. Sci., Sér. 1 Math., 9, 539-541 (1982) · Zbl 0521.57020
[5] Brown, J., Gromov-Witten invariants of toric fibrations. Int. Math. Res. Not., 5437-5482 (2014) · Zbl 1307.14077
[6] Ciocan-Fontanine, I.; Kim, B., Big \(I\)-Functions, Development of Moduli Theory—Kyoto 2013. Adv. Stud. Pure Math., 323-347 (2016), Math. Soc. Japan: Math. Soc. Japan Tokyo · Zbl 1369.14018
[7] Coates, T.; Corti, A.; Iritani, H.; Tseng, H.-H., Computing genus-zero twisted Gromov-Witten invariants. Duke Math. J., 3, 377-438 (2009) · Zbl 1176.14009
[8] Coates, T.; Corti, A.; Iritani, H.; Tseng, H.-H., Hodge-theoretic mirror symmetry for toric stacks. J. Differ. Geom., 1, 41-115 (2020) · Zbl 1464.14044
[9] Coates, T.; Givental, A., Quantum Riemann-Roch, Lefschetz and Serre. Ann. Math. (2), 1, 15-53 (2007) · Zbl 1189.14063
[10] Coates, T.; Givental, A.; Tseng, H.-H., Virasoro constraints for toric bundles, available at · Zbl 1536.14049
[11] Givental, A. B., Homological geometry and mirror symmetry, 472-480 · Zbl 0863.14021
[12] Givental, A. B., Equivariant Gromov-Witten invariants. Int. Math. Res. Not., 613-663 (1996) · Zbl 0881.55006
[13] Givental, A. B., A mirror theorem for toric complete intersections, 141-175 · Zbl 0936.14031
[14] Givental, A. B., Elliptic Gromov-Witten invariants and the generalized mirror conjecture, 107-155 · Zbl 0961.14036
[15] Givental, A. B., Gromov-Witten invariants and quantization of quadratic Hamiltonians. Mosc. Math. J., 4, 551-568 (2001), 645, English, with English and Russian summaries, dedicated to the memory of I.G. Petrovskii on the occasion of his 100th anniversary · Zbl 1008.53072
[16] Givental, A. B., Symplectic Geometry of Frobenius Structures, Frobenius Manifolds. Aspects Math., 91-112 (2004), Friedr. Vieweg: Friedr. Vieweg Wiesbaden · Zbl 1075.53091
[17] Goresky, M.; Kottwitz, R.; MacPherson, R., Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math., 1, 25-83 (1998) · Zbl 0897.22009
[18] Iritani, H., Convergence of quantum cohomology by quantum Lefschetz. J. Reine Angew. Math., 29-69 (2007) · Zbl 1160.14044
[19] Iritani, H., Quantum \(D\)-modules and generalized mirror transformations. Topology, 4, 225-276 (2008) · Zbl 1170.53071
[20] Iritani, H., An integral structure in quantum cohomology and mirror symmetry for toric orbifolds. Adv. Math., 3, 1016-1079 (2009) · Zbl 1190.14054
[21] Kouchnirenko, A. G., Polyèdres de Newton et nombres de Milnor. Invent. Math., 1, 1-31 (1976) · Zbl 0328.32007
[22] Lee, Y.-P.; Lin, H.-W.; Wang, C.-L., Invariance of quantum rings under ordinary flops II: a quantum Leray-Hirsch theorem. Algebr. Geom., 5, 615-653 (2016) · Zbl 1373.14055
[23] Ruan, Y., The Cohomology Ring of Crepant Resolutions of Orbifolds, Gromov-Witten Theory of Spin Curves and Orbifolds. Contemp. Math., 117-126 (2006), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI · Zbl 1105.14078
[24] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations (1987), Dover Publications, Inc.: Dover Publications, Inc. New York, reprint of the 1976 edition · Zbl 0169.10903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.