×

Homotopy theory of monoid actions via group actions and an Elmendorf style theorem. (English) Zbl 07792611

The paper presents a theorem that generalizes Elmendorf’s theorem to actions of monoids. The author constructs a model structure on the category of \(M\)-spaces and \(M\)-equivariant maps, where \(M\) is a monoid. The construction is based on a collection \(\mathcal{X}\) of submonoids of \(M\) and for each \(N\) in \(\mathcal{X}\), a collection \(\mathcal{Y}_N\) of subgroups of \(G(N)\), where \(G\) is the group completion functor from monoids to groups (i.e. the left adjoint of the forgetful functor). The weak equivalences and fibrations in this model structure are determined by the standard \(\mathcal{Y}_N\)-model structures on \(G(N)\)-spaces for all \(N\) in \(\mathcal{X}\). The paper also demonstrates that there exists a small category \(\mathbf{O}_{(\mathcal{X},\mathcal{Y})}\) whose objects are \(M\)-spaces \(M\times_N G(N)/H\) for each \(N \in \mathcal{X}\) and \(H\in \mathcal{Y}_N\) and morphisms are \(M\)-equivariant maps, such that, under mild conditions on \(M\) and \(\mathcal{X}\) and \(\mathcal{Y}\), the projective model structure on the category of contravariant \(\mathbf{O}_{(\mathcal{X},\mathcal{Y})}\)-diagrams of spaces is Quillen equivalent to the constructed model structure.

MSC:

55U40 Topological categories, foundations of homotopy theory
16W22 Actions of groups and semigroups; invariant theory (associative rings and algebras)

References:

[1] Elmendorf, AD, Systems of fixed point sets, Trans. Am. Math. Soc., 277, 1, 275-284 (1983) · Zbl 0521.57027 · doi:10.2307/1999356
[2] Malcev, AI, On the immersion of associative systems in groups, Mat. Sb., 6, 48, 331-336 (1939) · JFM 65.0079.01
[3] Erdal, MA; Ünlü, Ö., Semigroup actions on sets and the Burnside ring, Appl. Categ. Struct. (2016) · Zbl 1409.16033 · doi:10.1007/s10485-016-9477-4
[4] Strickland, N.P.: The Category of CGWH Spaces. Preprint (2009)
[5] Hirschhorn, PS, The Quillen model category of topological spaces, Expo. Math., 37, 1, 2-24 (2019) · Zbl 1428.18042 · doi:10.1016/j.exmath.2017.10.004
[6] Quillen, D.G.: Homotopical Algebra. Lecture Notes in Mathematics, No. 43, p. 156. Springer, Berlin (1967) · Zbl 0168.20903
[7] Dwyer, W.G., Spaliński, J.: Homotopy theories and model categories. In: Handbook of Algebraic Topology, pp. 73-126. North-Holland, Amsterdam (1995). doi:10.1016/B978-044481779-2/50003-1 · Zbl 0869.55018
[8] Hovey, M., Model Categories, 209 (1999), Providence: American Mathematical Society, Providence · Zbl 0909.55001
[9] Hirschhorn, PS, Model Categories and Their Localizations, 457 (2003), Providence: American Mathematical Society, Providence · Zbl 1017.55001
[10] May, JP; Ponto, K., More Concise Algebraic Topology: Localization, Completion, and Model Categories (2011), Chicago: University of Chicago Press, Chicago · Zbl 1249.55001 · doi:10.7208/chicago/9780226511795.001.0001
[11] Hess, K.; Kȩdziorek, M.; Riehl, E.; Shipley, B., A necessary and sufficient condition for induced model structures, J. Topol., 10, 2, 324-369 (2017) · Zbl 1381.55010 · doi:10.1112/topo.12011
[12] Berger, C.; Moerdijk, I., Axiomatic homotopy theory for operads, Comment. Math. Helv., 78, 4, 805-831 (2003) · Zbl 1041.18011 · doi:10.1007/s00014-003-0772-y
[13] Adámek, J.; Rosický, J., Locally Presentable and Accessible Categories, 316 (1994), Cambridge: Cambridge University Press, Cambridge · Zbl 0795.18007 · doi:10.1017/CBO9780511600579
[14] Hill, MA; Hopkins, MJ; Ravenel, DC, On the nonexistence of elements of Kervaire invariant one, Ann. Math., 184, 1-262 (2016) · Zbl 1366.55007 · doi:10.4007/annals.2016.184.1.1
[15] Nikolaus, T.; Scholze, P., On topological cyclic homology, Acta Math., 221, 2, 203-409 (2018) · Zbl 1457.19007 · doi:10.4310/ACTA.2018.v221.n2.a1
[16] Dotto, E.; Moi, K.; Patchkoria, I.; Reeh, SP, Real topological Hochschild homology, J. Eur. Math. Soc., 23, 1, 63-152 (2020) · Zbl 1473.16005 · doi:10.4171/jems/1007
[17] Huerta, J.; Sati, H.; Schreiber, U., Real ade-equivariant (co) homotopy and super m-branes, Commun. Math. Phys., 371, 2, 425-524 (2019) · Zbl 1431.83170 · doi:10.1007/s00220-019-03442-3
[18] Sati, H.; Schreiber, U., Equivariant cohomotopy implies orientifold tadpole cancellation, J. Geom. Phys., 156, 103775 (2020) · Zbl 1450.81055 · doi:10.1016/j.geomphys.2020.103775
[19] Piacenza, RJ, Homotopy theory of diagrams and CW-complexes over a category, Canad. J. Math., 43, 4, 814-824 (1991) · Zbl 0758.55015 · doi:10.4153/CJM-1991-046-3
[20] May, J.P.: Equivariant Homotopy and Cohomology Theory. CBMS Regional Conference Series in Mathematics, vol. 91, p. 366. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1996). doi:10.1090/cbms/091. With contributions by M. Cole, G. Comezaña, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner · Zbl 0890.55001
[21] Stephan, M., On equivariant homotopy theory for model categories, Homol. Homotopy Appl., 18, 2, 183-208 (2016) · Zbl 1357.18005 · doi:10.4310/HHA.2016.v18.n2.a10
[22] Guillou, B.; May, JP; Rubin, J., Enriched model categories in equivariant contexts, Homol. Homotopy Appl., 12, 2, 1-35 (2010)
[23] Erdal, MA; Güçlükan-İlhan, A., A model structure via orbit spaces for equivariant homotopy, J. Homotopy Relat. Struct., 14, 4, 1131-1141 (2019) · Zbl 1432.55034 · doi:10.1007/s40062-019-00241-4
[24] Lurie, J., Higher Topos Theory, 925 (2009), Princeton University Press: Princeton, Princeton University Press · Zbl 1175.18001 · doi:10.1515/9781400830558
[25] Fausk, H., Equivariant homotopy theory for pro-spectra, Geom. Topol., 12, 1, 103-176 (2008) · Zbl 1135.55005 · doi:10.2140/gt.2008.12.103
[26] Mandell, MA; May, JP, Equivariant orthogonal spectra and \(S\)-modules, Mem. Am. Math. Soc., 159, 755, 108 (2002) · Zbl 1025.55002 · doi:10.1090/memo/0755
[27] Schwede, S., Global Homotopy Theory (2018), Cambridge: Cambridge University Press, Cambridge · Zbl 1451.55001 · doi:10.1017/9781108349161
[28] Riehl, E., Categorical Homotopy Theory (2014), Cambridge: Cambridge University Press, Cambridge · Zbl 1317.18001 · doi:10.1017/CBO9781107261457
[29] Shulman, M.: Homotopy limits and colimits and enriched homotopy theory (2006)
[30] Moerdijk, I.; Svensson, J-A, The equivariant Serre spectral sequence, Proc. Am. Math. Soc., 118, 1, 263-278 (1993) · Zbl 0791.55004 · doi:10.1090/S0002-9939-1993-1123662-9
[31] Thomason, RW, Cat as a closed model category, Cah. Topol. Geom. Differ. Categ., 21, 3, 305-324 (1980) · Zbl 0473.18012
[32] Johnstone, PT, Sketches of an Elephant: A Topos Theory Compendium (2002), Oxford: Oxford University Press, Oxford · Zbl 1071.18002 · doi:10.1093/oso/9780198534259.001.0001
[33] Goerss, PG; Jardine, JF, Simplicial Homotopy Theory (2009), Basel: Springer, Basel · Zbl 1195.55001 · doi:10.1007/978-3-0346-0189-4
[34] Souza, J.A., Tozatti, H.V.: Chaos, attraction, and control for semigroup actions. In: Semigroup Forum, vol. 101, no. 1, pp. 202-225. Springer (2020) · Zbl 1457.37008
[35] Mittenhuber, D.: Semigroup actions on homogeneous spaces: control sets and stabilizer subgroups. In: Proceedings of 1995 34th IEEE Conference on Decision and Control, vol. 4, pp. 3289-3294. IEEE (1995)
[36] Sain, M.; Massey, J., Invertibility of linear time-invariant dynamical systems, IEEE Trans. Autom. Control, 14, 2, 141-149 (1969) · doi:10.1109/TAC.1969.1099133
[37] Milnor, J.: On the concept of attractor. In: The Theory of Chaotic Attractors, pp. 243-264. Springer, New York (1985) · Zbl 0595.58028
[38] Souza, JA, On the existence of global attractors in principal bundles, Dyn. Syst., 32, 3, 410-422 (2017) · Zbl 1387.37019 · doi:10.1080/14689367.2016.1278429
[39] Kari, J., Ollinger, N.: Periodicity and immortality in reversible computing. In: International Symposium on Mathematical Foundations of Computer Science, pp. 419-430. Springer (2008) · Zbl 1173.68521
[40] Hooper, PK, The undecidability of the Turing machine immortality problem 1, J. Symbol. Logic, 31, 2, 219-234 (1966) · Zbl 0173.01201 · doi:10.2307/2269811
[41] Lamb, JS; Roberts, JA, Time-reversal symmetry in dynamical systems: a survey, Physica D, 112, 1-2, 1-39 (1998) · Zbl 1194.34072 · doi:10.1016/S0167-2789(97)00199-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.