×

Möbius orthogonality of the Thue-Morse sequence along Piatetski-Shapiro numbers. (English) Zbl 07791442

Author’s abstract: We show that the Möbius function is orthogonal to the Thue-Morse sequence \(t(n)\) taken along the Piatetski-Shapiro numbers \(\lfloor n^c\rfloor\) for any \(1 < c < 2\). Previously, this property was established for the subsequence along the squares \(t(n^2)\). These are both examples of Möbius orthogonal sequences with maximum entropy.

MSC:

11B85 Automata sequences
11J54 Small fractional parts of polynomials and generalizations
11L07 Estimates on exponential sums

References:

[1] J.-P. Allouche and J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: Se-quences and Their Applications (Singapore, 1998), Springer Ser. Discrete Math. Theor. Computer Sci., Springer, London, 1999, 1-16. · Zbl 1005.11005
[2] J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, Cam-bridge, 2003. · Zbl 1086.11015
[3] S. V. Avgustinovich, The number of different subwords of given length in the Morse-Hedlund sequence, Sibirsk. Zh. Issled. Oper. 1 (1994), no. 2, 3-7, 103.
[4] M. V. Berlinkov, On the probability of being synchronizable, in: Algorithms and Dis-crete Applied Mathematics, Lecture Notes in Computer Sci. 9602, Springer, 2016, 67-83.
[5] J. Bourgain, P. Sarnak, and T. Ziegler, Disjointness of Moebius from horocycle flows, in: From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math. 28, Springer, New York, 2013, 67-83. · Zbl 1336.37030
[6] S. Brlek, Enumeration of factors in the Thue-Morse word, in: First Montreal Confer-ence on Combinatorics and Computer Science, 1987, Discrete Appl. Math. 24 (1989), 83-96. · Zbl 0683.20045
[7] J. Byszewski, J. Konieczny, and C. Müllner, Gowers norms for automatic sequences, arXiv:2002.09509 (2020).
[8] H. Daboussi, Remarques sur les fonctions multiplicatives, in: Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, exp. 4, Secrétariat Math., Paris, 1977. · Zbl 0378.10028
[9] H. Daboussi and H. Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc. (2) 26 (1982), 245-264. · Zbl 0499.10052
[10] C. Dartyge et G. Tenenbaum, Sommes des chiffres de multiples d’entiers, Ann. Inst. Fourier (Grenoble) 55 (2005), 2423-2474. · Zbl 1110.11025
[11] A. de Luca and S. Varricchio, Some combinatorial properties of the Thue-Morse sequence and a problem in semigroups, Theoret. Computer Sci. 63 (1989), 333-348. · Zbl 0671.10050
[12] J.-M. Deshouillers, M. Drmota, C. Müllner, A. Shubin, and L. Spiegelhofer, Syn-chronizing automatic sequences along Piatetski-Shapiro sequences, arXiv:2211.01422 (2022).
[13] J.-M. Deshouillers, M. Drmota, C. Müllner, and L. Spiegelhofer, Randomness and nonrandomness properties of Piatetski-Shapiro sequences modulo m, Mathematika 65 (2019), 1051-1073. · Zbl 1469.11027
[14] T. Downarowicz and J. Serafin, Almost full entropy subshifts uncorrelated to the Möbius function, Int. Math. Res. Notices 2019, 3459-3472. · Zbl 1436.37009
[15] T. Downarowicz and J. Serafin, A strictly ergodic, positive entropy subshift uniformly uncorrelated to the Möbius function, Studia Math. 251 (2020), 195-206. · Zbl 1447.37010
[16] M. Drmota, C. Mauduit, and J. Rivat, Normality along squares, J. Eur. Math. Soc. 21 (2019), 507-548. · Zbl 1430.11010
[17] M. Drmota, C. Mauduit, J. Rivat, and L. Spiegelhofer, Möbius orthogonality of se-quences with maximal entropy, J. Anal. Math. 146 (2022), 531-548. · Zbl 1510.11128
[18] M. Drmota, C. Müllner, and L. Spiegelhofer, Möbius orthogonality for the Zeckendorf sum-of-digits function, Proc. Amer. Math. Soc. 146 (2018), 3679-3691. · Zbl 1439.11026
[19] M. Drmota, C. Müllner, and L. Spiegelhofer, Primes as sums of Fibonacci numbers, arXiv:2109.04068 (2021).
[20] S. Ferenczi, J. Kułaga-Przymus, and M. Lemańczyk. Sarnak’s conjecture: what’s new, In: Ergodic Theory and Dynamical Systems in their Interactions with Arithmetics and Combinatorics, Lecture Notes in Math. 2213, Springer, Cham, 2018, 163-235. · Zbl 1421.37003
[21] A. O. Gel’fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967/1968), 259-265. · Zbl 0155.09003
[22] W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), 465-588. · Zbl 1028.11005
[23] S. W. Graham and G. Kolesnik. Van der Corput’s Method of Exponential Sums, London Math. Soc. Lecture Note Ser. 126, Cambridge Univ. Press, Cambridge, 1991. · Zbl 0713.11001
[24] B. Green, Montréal notes on quadratic Fourier analysis, in: Additive Combinatorics, CRM Proc. Lecture Notes 43, Amer. Math. Soc., Providence, RI, 2007, 69-102. · Zbl 1138.43001
[25] B. Host and B. Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), 397-488. · Zbl 1077.37002
[26] B. Host and B. Kra, A point of view on Gowers uniformity norms, New York J. Math. 18 (2012), 213-248. · Zbl 1268.11018
[27] K.-H. Indlekofer and I. Kátai, Investigations in the theory of q-additive and q-multi-plicative functions. I, Acta Math. Hungar. 91 (2001), 53-78. · Zbl 0980.11001
[28] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004. · Zbl 1059.11001
[29] A. Kanigowski, M. Lemańczyk, and M. Radziwiłł, Rigidity in dynamics and Möbius disjointness, Fund. Math. 255 (2021), 309-336. · Zbl 1490.37009
[30] A. A. Karatsuba, Basic Analytic Number Theory, Springer, Berlin, 1993. · Zbl 0767.11001
[31] I. Kátai. A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), 223-225. · Zbl 0607.10034
[32] J. F. Koksma, Some theorems on Diophantine inequalities, Scriptum 5, Math. Cen-trum, Amsterdam, 1950, i+51 pp. · Zbl 0038.02803
[33] J. Konieczny. Gowers norms for the Thue-Morse and Rudin-Shapiro sequences, Ann. Inst. Fourier (Grenoble) 69 (2019), 1897-1913. · Zbl 1466.11011
[34] N. M. Korobov, Weyl’s estimates of sums and the distribution of primes, Dokl. Akad. Nauk SSSR 123 (1958), 28-31 (in Russian). · Zbl 0105.03303
[35] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Pure Appl. Math., Wiley-Interscience, New York, 1974. · Zbl 0281.10001
[36] J. Kułaga-Przymus and M. Lemańczyk, Sarnak’s conjecture from the ergodic theory point of view, arXiv:2009.04757 (2020).
[37] C. Mauduit et J. Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), 107-148. · Zbl 1278.11076
[38] C. Mauduit et J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. (2) 171 (2010), 1591-1646. · Zbl 1213.11025
[39] C. Müllner, Automatic sequences fulfill the Sarnak conjecture, Duke Math. J. 166 (2017), 3219-3290. · Zbl 1439.11089
[40] C. Müllner and L. Spiegelhofer, Normality of the Thue-Morse sequence along Piatet-ski-Shapiro sequences, II, Israel J. Math. 220 (2017), 691-738. · Zbl 1400.11119
[41] L. Spiegelhofer, Piatetski-Shapiro sequences via Beatty sequences, Acta Arith. 166 (2014), 201-229. · Zbl 1359.11026
[42] L. Spiegelhofer, The level of distribution of the Thue-Morse sequence, Compos. Math. 156 (2020), 2560-2587. · Zbl 1468.11206
[43] P. Szüsz, Über ein Problem der Gleichverteilung, in: Comptes Rendus du Premier Con-grès des Mathématiciens Hongrois, 1950, Akadémiai Kiadó, Budapest, 1952, 461-472. · Zbl 0048.28001
[44] T. Tao, The Katai-Bourgain-Sarnak-Ziegler orthogonality criterion, 2011, terrytao. wordpress.com/2011/11/21/the-bourgain-sarnak-ziegler-orthogonality-criterion/.
[45] T. Tao, Higher Order Fourier Analysis, Grad. Stud. Math. 142, Amer. Math. Soc., Providence, RI, 2012. · Zbl 1277.11010
[46] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Stud. Adv. Math. 47, Cambridge Univ. Press, Cambridge, 1995. · Zbl 0831.11001
[47] I. M. Vinogradov, A new estimate of the function ζ(1 + it), Izv. Akad. Nauk SSSR Ser. Mat. 22 (1958), 161-164 (in Russian). · Zbl 0097.26302
[48] Andrei Shubin Institute of Discrete Mathematics and Geometry TU Wien A-1040 Wien, Austria E-mail: andrei.shubin@tuwien.ac.at
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.