×

SMIwiz: an integrated toolbox for multidimensional seismic modelling and imaging. (English) Zbl 07788834

Summary: This paper contributes an open source software – SMIwiz, which integrates seismic modelling, reverse time migration (RTM), and full waveform inversion (FWI) into a unified computer implementation. SMIwiz has the machinery to do both 2D and 3D simulation in a consistent manner. The package features a number of computational recipes for efficient calculation of imaging condition and inversion gradient: a dynamic evolving computing box to limit the simulation cube and a well-designed wavefield reconstruction strategy to reduce the memory consumption when dealing with 3D problems. The modelling in SMIwiz runs independently: each shot corresponds to one processor in a bijective manner to maximize the scalability. A batchwise job scheduling strategy is designed to handle large 3D imaging tasks on computer with limited number of cores. The viability of SMIwiz is demonstrated by a number of applications on benchmark models.

MSC:

68-XX Computer science
86-XX Geophysics

References:

[1] Baysal, E.; Kosloff, D.; Sherwood, J., Reverse time migration. Geophysics, 1514-1524 (1983)
[2] McMechan, G., Migration by extrapolation of time-dependent boundary values. Geophys. Prospect., 3, 413-420 (1983)
[3] Tarantola, A., Inversion of seismic reflection data in the acoustic approximation. Geophysics, 8, 1259-1266 (1984)
[4] Lailly, P., The seismic inverse problem as a sequence of before stack migrations, 206-220
[5] Virieux, J.; Calandra, H.; Plessix, R. E., A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect., 794-813 (2011)
[6] Virieux, J., SH wave propagation in heterogeneous media: velocity-stress finite difference method. Geophysics, 1259-1266 (1984)
[7] Virieux, J., P-SV wave propagation in heterogeneous media: velocity stress finite difference method. Geophysics, 889-901 (1986)
[8] Levander, A. R., Fourth-order finite-difference P-SV seismograms. Geophysics, 11, 1425-1436 (1988)
[9] Smith, W. D., The application of finite element analysis to body wave propagation problems. Geophys. J. Int., 2, 747-768 (1975)
[10] Carcione, J. M., A generalization of the Fourier pseudospectral method. Geophysics, 6, A53-A56 (2010)
[11] Seriani, G.; Priolo, E., Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des., 337-348 (1994) · Zbl 0810.73079
[12] Komatitsch, D.; Vilotte, J. P., The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am., 368-392 (1998)
[13] Hu, F. Q.; Hussaini, M. Y.; Rasetarinera, P., An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys., 2, 921-946 (1999) · Zbl 0933.65113
[14] Dumbser, M.; Käser, M., An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case. Geophys. J. Int., 1, 319-336 (2006)
[15] Abdelkhalek, R.; Calandra, H.; Coulaud, O.; Roman, J.; Latu, G., Fast seismic modeling and reverse time migration on a GPU cluster, 36-43
[16] Bohlen, T., Parallel 3-D viscoelastic finite-difference seismic modeling. Comput. Geosci., 887-899 (2002)
[17] Komatitsch, D.; Martin, R., An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 5, SM155-SM167 (2007)
[18] Bohlen, T.; Nil, D. D.; Jetschny, D. K.S., SOFI3D - seismic modeling with finite differences 3D - acoustic and viscoelastic version - user guide, URL
[19] Michéa, D.; Komatitsch, D., Accelerating a 3D finite-difference wave propagation code using GPU graphics cards. Geophys. J. Int., 1, 389-402 (2010)
[20] Weiss, R. M.; Shragge, J., Solving 3d anisotropic elastic wave equations on parallel gpu devices. Geophysics, 2, F7-F15 (2013)
[21] Etgen, J.; Gray, S. H.; Zhang, Y., An overview of depth imaging in exploration geophysics. Geophysics, 6, WCA5-WCA17 (2009)
[22] Virieux, J.; Operto, S., An overview of full waveform inversion in exploration geophysics. Geophysics, 6, WCC1-WCC26 (2009)
[23] Brossier, R., Two-dimensional frequency-domain visco-elastic full waveform inversion: parallel algorithms, optimization and performance. Comput. Geosci., 4, 444-455 (2011)
[24] Köhn, D.; De Nil, D.; Kurzmann, A.; Przebindowska, A.; Bohlen, T., On the influence of model parametrization in elastic full waveform tomography. Geophys. J. Int., 325-345 (2012)
[25] Yang, P.; Gao, J.; Wang, B., RTM using effective boundary saving: a staggered grid GPU implementation. Comput. Geosci., 64-72 (2014)
[26] Yang, P.; Gao, J.; Wang, B., A graphics processing unit implementation of time-domain full-waveform inversion. Geophysics, 3, F31-F39 (2015)
[27] Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B., Time-domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with opencl. Comput. Geosci., 142-155 (2017)
[28] Graves, R., Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismol. Soc. Am., 1091-1106 (1996)
[29] Fornberg, B., Classroom note: calculation of weights in finite difference formulas. SIAM Rev., 3, 685-691 (1998) · Zbl 0914.65010
[30] Hicks, G. J., Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions. Geophysics, 156-166 (2002)
[31] Yang, P., A unified formulation of nonlinear, linearized and reflection waveform inversion. Bull. Seismol. Soc. Am. (2023), under review
[32] Nocedal, J.; Wright, S. J., Numerical Optimization (2006), Springer · Zbl 1104.65059
[33] Yang, P.; Brossier, R.; Métivier, L.; Virieux, J.; Zhou, W., A time-domain preconditioned truncated Newton approach to visco-acoustic multiparameter full waveform inversion. SIAM J. Sci. Comput., 4, B1101-B1130 (2018) · Zbl 1394.65045
[34] Nocedal, J., Updating quasi-Newton matrices with limited storage. Math. Comput., 151, 773-782 (1980) · Zbl 0464.65037
[35] Zhang, H. J.; Zhang, Y., Reverse time migration in 3D heterogeneous TTI media. SEG Tech. Program Expand. Abstr., 1, 2196-2200 (2008)
[36] Zhang, Y.; Sun, J., Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding. First Break, 53-59 (2009)
[37] Zhang, Z.; Irving, J.; Simons, F.; Alkhalifah, T., Seismic evidence for a 1000 km mantle discontinuity under the Pacific. Nat. Commun., 1714 (2023)
[38] Métivier, L.; Brossier, R., The SEISCOPE optimization toolbox: a large-scale nonlinear optimization library based on reverse communication. Geophysics, 2, F11-F25 (2016)
[39] Yang, P., libEMM: a fictious wave domain 3D CSEM modelling library bridging sequential and parallel GPU implementation. Comput. Phys. Commun. (2023) · Zbl 07701709
[40] Yang, P., 3D fictitious wave domain CSEM inversion by adjoint source estimation. Comput. Geosci. (2023)
[41] Pratt, R. G., Seismic waveform inversion in the frequency domain, part I: theory and verification in a physical scale model. Geophysics, 888-901 (1999)
[42] Yang, P.; Brossier, R.; Métivier, L.; Virieux, J., Wavefield reconstruction in attenuating media: a checkpointing-assisted reverse-forward simulation method. Geophysics, 6, R349-R362 (2016)
[43] Yang, P.; Brossier, R.; Virieux, J., Wavefield reconstruction from significantly decimated boundaries. Geophysics, 5, T197-T209 (2016)
[44] Cerjan, C.; Kosloff, D.; Kosloff, R.; Reshef, M., A nonreflecting boundary condition for discrete acoustic and elastic wave equations. Geophysics, 4, 2117-2131 (1985)
[45] Clayton, R.; Engquist, B., Absorbing boundary conditions for acoustic and elastic wave equations. Bull. Seismol. Soc. Am., 1529-1540 (1977)
[46] Minkoff, S. E., Spatial parallelism of a 3D finite difference velocity-stress elastic wave propagation code. SIAM J. Sci. Comput., 1, 1-19 (2002) · Zbl 1013.86001
[47] Nihei, K. T.; Li, X., Frequency response modelling of seismic waves using finite difference time domain with phase sensitive detection (TD-PSD). Geophys. J. Int., 1069-1078 (2007)
[48] L. Sirgue, T.J. Etgen, U. Albertin, S. Brandsberg-Dahl, System and method for 3D frequency-domain waveform inversion based on 3D time-domain forward modeling, US Patent Application Publication US2007/0282535 A1.
[49] Bunks, C.; Salek, F. M.; Zaleski, S.; Chavent, G., Multiscale seismic waveform inversion. Geophysics, 5, 1457-1473 (1995)
[50] Bian, A.; Yu, W., Layer-stripping full waveform inversion with damped seismic reflection data. J. Earth Sci., 2, 241-249 (2011)
[51] Luo, Y.; Schuster, G. T., Wave-equation traveltime inversion. Geophysics, 5, 645-653 (1991)
[52] Warner, M.; Guasch, L., Adaptive waveform inversion. Theory, Geophysics, 6, R429-R445 (2016)
[53] Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J., An optimal transport approach for seismic tomography: application to 3D full waveform inversion. Inverse Probl., 11 (2016) · Zbl 1410.86018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.