×

Modified efficient importance sampling for partially non-Gaussian state space models. (English) Zbl 07788764

Summary: The construction of an importance density for partially non-Gaussian state space models is crucial when simulation methods are used for likelihood evaluation, signal extraction, and forecasting. The method of efficient importance sampling is successful in this respect, but we show that it can be implemented in a computationally more efficient manner using standard Kalman filter and smoothing methods. Efficient importance sampling is generally applicable for a wide range of models, but it is typically a custom-built procedure. For the class of partially non-Gaussian state space models, we present a general method for efficient importance sampling. Our novel method makes the efficient importance sampling methodology more accessible because it does not require the computation of a (possibly) complicated density kernel that needs to be tracked for each time period. The new method is illustrated for a stochastic volatility model with a Student’s distribution.
{© 2018 The Authors. Statistica Neerlandica published by John Wiley & Sons Ltd on behalf of VVS.}

MSC:

62Mxx Inference from stochastic processes
65Cxx Probabilistic methods, stochastic differential equations
62Pxx Applications of statistics

Software:

SsfPack

References:

[1] Carter, C. K., & Kohn, R. (1994). On Gibbs sampling for state space models. Biometrika, 81(3), 541-553. · Zbl 0809.62087
[2] Danielsson, J., & Richard, J. F. (1993). Accelerated gaussian importance sampler with application to dynamic latent variable models. Journal of Applied Econometrics, 8, S153-S174.
[3] deJong, P., & Shephard, N. (1995). The simulation smoother for time series models. Biometrika, 82, 339-350. · Zbl 0823.62072
[4] Doornik, J. A. (2007). Object‐oriented matrix programming using Ox(3rd ed.). London: Timberlake Consultants Press.
[5] Durbin, J., & Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non‐Gaussian state space models. Biometrika, 84(3), 669-684. · Zbl 0888.62086
[6] Durbin, J., & Koopman, S. J. (2000). Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives. Journal of the Royal Statistical Society B, 62(1), 3-56. · Zbl 0945.62084
[7] Durbin, J., & Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89(3), 603-615. · Zbl 1036.62071
[8] Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods(2nd ed.). Oxford: Oxford University Press. · Zbl 1270.62120
[9] Durham, A. G., & Gallant, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuous‐time diffusion processes. Journal of Business and Economic Statistics, 20, 297-316.
[10] Fruhwirth‐Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis, 15, 183-202. · Zbl 0815.62065
[11] Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica, 57, 1317-39. · Zbl 0683.62068
[12] Granger, C. W. J., & Morris, M. J. (1976). Time series modelling and interpretation. Journal of the Royal Statistical Society A, 139(2), 246-257.
[13] Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge: Cambridge University Press.
[14] Jung, R. C., Liesenfeld, R., & Richard, J. F. (2011). Dynamic factor models for multivariate count data: An application to stock‐market trading activity. Journal of Business and Economic Statistics, 29, 73-85. · Zbl 1214.62092
[15] Jungbacker, B., & Koopman, S. J. (2007). Monte Carlo estimation for nonlinear non‐Gaussian state space models. Biometrika, 94(4), 827-839. · Zbl 1156.62350
[16] Kloek, T., & vanDijk, H. K. (1978). Bayesian estimation of equation system parameters: An application of integration by Monte Carlo. Econometrica, 47, 1-20. · Zbl 0376.62014
[17] Koopman, S. J., Lucas, A., & Scharth, M. (2014). Numerically accelerated importance sampling for nonlinear non‐Gaussian state space models. Journal of Business and Economic Statistics, 33(1), 114-127.
[18] Koopman, S. J., & Scharth, M. (2013). The analysis of stochastic volatility in the presence of daily realised measures. Journal of Financial Econometrics, 11, 76-115.
[19] Koopman, S. J., Shephard, N., & Doornik, J. A. (2008). SsfPack 3.0: Statistical algorithms for models in state space form. London: Timberlake Consultants Press.
[20] Liesenfeld, R., & Richard, J. F. (2003). Univariate and multivariate stochastic volatility models: Estimation and diagnostics. Journal of Empirical Finance, 10, 505-531.
[21] Richard, J. F., & Zhang, W. (2007). Efficient high‐dimensional importance sampling. Journal of Econometrics, 141, 1385-1411. · Zbl 1420.65005
[22] Ripley, B. D. (1987). Stochastic simulation. New York: Wiley. · Zbl 0613.65006
[23] Shephard, N. (1994). Partial non‐Gaussian state space. Biometrika, 81(1), 115-131. · Zbl 0796.62079
[24] Shephard, N. (2005). Stochastic volatility: Selected readings. New York: Oxford University Press. · Zbl 1076.60005
[25] Shephard, N., & Pitt, M. K. (1997). Likelihood analysis of non‐Gaussian measurement time series. Biometrika, 84(3), 653-667. · Zbl 0888.62095
[26] So, M. K. P. (2003). Posterior mode estimation for nonlinear and non‐Gaussian state space models. Statistica Sinica, 13, 255-274. · Zbl 1017.62085
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.