×

Lower bound for the expected supremum of fractional Brownian motion using coupling. (English) Zbl 07787407

Summary: We derive a new theoretical lower bound for the expected supremum of drifted fractional Brownian motion with Hurst index \(H\in(0,1)\) over a (in)finite time horizon. Extensive simulation experiments indicate that our lower bound outperforms the Monte Carlo estimates based on very dense grids for \(H\in(0,\tfrac{1}{2})\). Additionally, we derive the Paley-Wiener-Zygmund representation of a linear fractional Brownian motion in the general case and give an explicit expression for the derivative of the expected supremum at \(H=\tfrac{1}{2}\) in the sense of K. Bisewski et al. [Electron. J. Probab. 27, Paper No. 129, 35 p. (2022; Zbl 1507.60048)].

MSC:

60G22 Fractional processes, including fractional Brownian motion
60G15 Gaussian processes
68M20 Performance evaluation, queueing, and scheduling in the context of computer systems

Citations:

Zbl 1507.60048

References:

[1] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards Appl. Math. Ser. 55). U.S. Government Printing Office, Washington, D.C. · Zbl 0171.38503
[2] Asmussen, S., Glynn, P. and Pitman, J. (1995). Discretization error in simulation of one-dimensional reflecting Brownian motion. Ann. Appl. Prob.5, 875-896. · Zbl 0853.65147
[3] Benassi, A., Jaffard, S. and Roux, D. (1997). Elliptic Gaussian random processes. Rev. Mat. Iberoamericana13, 19-90. · Zbl 0880.60053
[4] Bisewski, K., Dȩbicki, K. and Mandjes, M. (2021). Bounds for expected supremum of fractional Brownian motion with drift. J. Appl. Prob.58, 411-427. · Zbl 1476.60074
[5] Bisewski, K., Dȩbicki, K. and Rolski, T. (2022). Derivatives of sup-functionals of fractional Brownian motion evaluated at \({H}=1/2\) . Electron. J. Prob.27, 1-35. · Zbl 1507.60048
[6] Bisewski, K. and Ivanovs, J. (2020). Zooming in on a Lévy process: Failure to observe threshold exceedance over a dense grid. Electron. J. Prob.25, 1-33. · Zbl 1459.60098
[7] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion—Facts and Formulae, 2nd edn. Birkhäuser, Basel. · Zbl 1012.60003
[8] Borovkov, K., Mishura, Y., Novikov, A. and Zhitlukhin, M. (2017). Bounds for expected maxima of Gaussian processes and their discrete approximations. Stochastics89, 21-37. · Zbl 1361.60027
[9] Borovkov, K., Mishura, Y., Novikov, A. and Zhitlukhin, M. (2018). New and refined bounds for expected maxima of fractional Brownian motion. Statist. Prob. Lett.137, 142-147. · Zbl 1406.60058
[10] Davies, R. B. and Harte, D. (1987). Tests for Hurst effect. Biometrika74, 95-101. · Zbl 0612.62123
[11] Dieker, T. (2004). Simulation of fractional Brownian motion. Master’s thesis, Department of Mathematical Sciences, University of Twente.
[12] Ferger, D. (1999). On the uniqueness of maximizers of Markov-Gaussian processes. Statist. Prob. Lett.45, 71-77. · Zbl 0940.60053
[13] Gradshteyn, I. S. and Ryzhik, I. M. (2015). Table of Integrals, Series, and Products, 8th edn. Elsevier/Academic Press, Amsterdam. · Zbl 0918.65002
[14] Janson, S. (2007). Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Prob. Surv.4, 80-145. · Zbl 1189.60147
[15] Kordzakhia, N. E., Kutoyants, Y. A., Novikov, A. A. and Hin, L.-Y. (2018). On limit distributions of estimators in irregular statistical models and a new representation of fractional Brownian motion. Statist. Prob. Lett.139, 141-151. · Zbl 1463.62033
[16] Kroese, D. P. and Botev, Z. I. (2015). Spatial process simulation. In Stochastic Geometry, Spatial Statistics and Random Fields, ed. V. Schmidt. Springer, New York, pp. 369-404. · Zbl 1346.68244
[17] Makogin, V. (2016). Simulation paradoxes related to a fractional Brownian motion with small Hurst index. Mod. Stochastic Theory Appl.3, 181-190. · Zbl 1353.65012
[18] Malsagov, A. and Mandjes, M. (2019). Approximations for reflected fractional Brownian motion. Phys. Rev. E100, 032120.
[19] Mandelbrot, B. B. and Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev.10, 422-437. · Zbl 0179.47801
[20] Peltier, R.-F. and Véhel, J. L. (1995). Multifractional Brownian motion: Definition and preliminary results. PhD thesis, INRIA.
[21] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman & Hall, New York. · Zbl 0925.60027
[22] Seijo, E. and Sen, B. (2011). A continuous mapping theorem for the smallest argmax functional. Electron. J. Statist.5, 421-439. · Zbl 1329.60090
[23] Shao, Q.-M. (1996). Bounds and estimators of a basic constant in extreme value theory of Gaussian processes. Statist. Sinica6, 245-257. · Zbl 0841.60036
[24] Shepp, L. A. (1979). The joint density of the maximum and its location for a Wiener process with drift. J. Appl. Prob.16, 423-427. · Zbl 0403.60072
[25] Stoev, S. A. and Taqqu, M. S. (2006). How rich is the class of multifractional Brownian motions? Stochastic Process. Appl.116, 200-221. · Zbl 1094.60024
[26] Vardar-Acar, C. and Bulut, H. (2015). Bounds on the expected value of maximum loss of fractional Brownian motion. Statist. Prob. Lett.104, 117-122. · Zbl 1321.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.