×

Infinite orthogonal exponentials for a class of Moran measures. (English) Zbl 07786174

For a sequence \(\{M_n\}_{n=1}^{\infty}\) of expanding matrices with \(M_n\in M_d(\mathbb{Z})\) and a sequence \(\{D_n\}_{n=1}^{\infty}\) of finite digit sets with \(D_n\subset\mathbb{Z}^{d}\), the Moran measure \(\mu_{\{M_{n}\},\{D_{n}\}}\) is defined by the infinite convolution \[ \mu_{\{M_n\},\{D_n\}}=\delta_{M_{1}^{-1}D_1}\ast\delta_{M_{1}^{-1}M_{2}^{-1}D_2}\ast\delta_{M_{1}^{-1}M_{2}^{-1} M_{3}^{-1}D_3}\ast\cdots \] and the convergence is in the weak sense. Under some additional assumptions, the authors show that \(L^{2}(\mu_{\{M_n\},\{D_n\}})\) contains an infinite orthogonal set of exponential functions if and only if there exists an infinite subsequence \(\{n_{k}\}_{k=1}^{\infty}\) of \(\{n\}_{n=1}^{\infty}\) such that \[ \left(M_{n_{k}+1}^{*}M_{n_{k}+2}^{*}\cdots M_{n_{k+1}}^{*}Z_{n_{k+1}}\right)\cap\mathbb{Z}^{d} \neq \emptyset \] for any \(k\in \mathbb{N}^{+}\), where \(Z_{n_{k+1}}:=\{x: \sum_{\alpha\in D_{n_{k+1}}}e^{2\pi i\langle \alpha,x \rangle}=0\}\cap[0,1)^d\). This extends the results of J. Li [Sci. China, Math. 58, No. 12, 2541–2548 (2015; Zbl 1342.28018)].

MSC:

28A80 Fractals
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)

Citations:

Zbl 1342.28018
Full Text: DOI

References:

[1] An, L. X., Fu, X. Y. and Lai, C. K., On spectral Cantor-Moran measures and a variant of Bourgains sum of sine problem, Adv. Math.349 (2019) 84-124. · Zbl 1416.42005
[2] An, L. X. and He, X. G., A class of spectral Moran measures, J. Funct. Anal.266 (2014) 343-354. · Zbl 1303.28009
[3] L. X. An and C. K. Lai, Product-form Hadamard triples and its spectral self-similar measures, preprint (2022), arXiv:2209.05616. · Zbl 1522.42018
[4] An, L. X. and Wang, C., On self-similar spectral measures, J. Funct. Anal.280 (2021) 108821. · Zbl 1454.28009
[5] L. X. An, C. Wang and M. M. Zhang, Characterization of spectral Cantor-Moran measures with consecutive digits, Available at SSRN 4218176.
[6] Chen, M. L. and Liu, J. C., The cardinality of orthogonal exponentials of planar self-affine measures with three-element digit sets, J. Funct. Anal.277 (2019) 135-156. · Zbl 1414.28016
[7] Chen, M. L., Liu, J. C. and Su, J., Spectral property of the planar self-affine measures with three-element digit sets, Forum Math.32 (2020) 673-681. · Zbl 1437.28009
[8] Dai, X. R., He, X. G. and Lai, C. K., Spectral property of Cantor measures with consecutive digits, Adv. Math.242 (2013) 187-208. · Zbl 1277.28009
[9] Dai, X. R., He, X. G. and Lau, K. S, On spectral N-Bernoulli measures, Adv. Math.259 (2014) 511-531. · Zbl 1303.28011
[10] Deng, Q. R., Spectrality of one dimensional self-similar measures with consecutive digits, J. Math. Anal. Appl.409 (2014) 331-346. · Zbl 1306.28005
[11] Deng, Q. R. and Lau, K. S., Sierpinski-type spectral self-similar measures, J. Funct. Anal.269 (2015) 1310-1326. · Zbl 1323.28011
[12] Dutkay, D. and Jorgensen, P., Wavelets on fractals, Rev. Mat. Iberoam.22 (2006) 131-180. · Zbl 1104.42021
[13] Dutkay, D. and Jorgensen, P., Fourier frequencies in affine iterated function systems, J. Funct. Anal.247 (2007) 110-137. · Zbl 1128.42013
[14] Dutkay, D. and Jorgensen, P., Probability and Fourier duality for affine iterated function systems, Acta Appl. Math.107 (2009) 293-311. · Zbl 1177.28036
[15] Dutkay, D. E., Haussermann, J. and Lai, C. K., Hadamard triples generate self-affine spectral measures, Trans. Amer. Math. Soc.371 (2019) 1439-1481. · Zbl 1440.42030
[16] Farkas, B., Matolcsi, M. and Móra, P., On Fuglede’s conjecture and the existence of universal spectra, J. Fourier Anal. Appl.12 (2006) 483-494. · Zbl 1106.42031
[17] Farkas, B. and Révész, S. G., Tiles with no spectra in dimension \(4\), Math. Scand.98 (2006) 44-52. · Zbl 1139.52019
[18] Feng, D. J., Wen, Z. Y. and Wu, J., Some dimensional results for homogeneous Moran sets, Sci. China Math.40 (1997) 475-482. · Zbl 0881.28003
[19] Fu, X. Y., He, X. G. and Lau, K. S., Spectrality of self-similar tiles, Constr. Approx.42 (2015) 519-541. · Zbl 1329.42032
[20] Fu, Y. S., He, X. G. and Wen, Z. Y., Spectra of Bernoulli convolutions and random convolutions, J. Math. Pures Appl.116 (2018) 105-131. · Zbl 1400.42005
[21] Fu, Y. S. and Wang, C., Spectra of a class of Cantor-Moran measures with three-element digit sets, J. Approx. Theory261 (2021) 105494.
[22] Fu, Y. S. and Wen, Z. X., Spectrality of infinite convolutions with three-element digit sets, Monatsh. Math.183 (2017) 465-485. · Zbl 1371.28018
[23] Fuglede, B., Commuting self-adjoint partial differential operators and a group theoretic problem, J. Funct. Anal.16 (1974) 101-121. · Zbl 0279.47014
[24] Greenfeld, R. and Lev, N., Spectrality and tiling by cylindric domains, J. Funct. Anal.271 (2016) 2808-2821. · Zbl 1348.42023
[25] He, L. and He, X. G., On the Fourier orthonormal bases of Cantor-Moran measures, J. Funct. Anal.272 (2017) 1980-2004. · Zbl 1357.28010
[26] He, X. G., Lai, C. K. and Lau, K. S., Exponential spectra in \(L^2(\mu)\), Appl. Comput. Harmon. Anal.34 (2013) 327-338. · Zbl 1264.42010
[27] Hu, T. Y. and Lau, K. S., Spectral property of the Bernoulli convolutions, Adv. Math.219 (2008) 554-567. · Zbl 1268.42044
[28] Iosevich, A., Katz, N. and Tao, T., The Fuglede spectral conjecture holds for convex planar domains, Math. Res. Lett.10 (2003) 559-569. · Zbl 1087.42018
[29] Jorgensen, P. and Pedersen, S., Dense analytic subspaces in fractal \(L^2\)-spaces, J. Anal. Math.75 (1998) 185-228. · Zbl 0959.28008
[30] Kolountzakis, M. N. and Matolcsi, M., Tiles with no spectra, Forum Math.18 (2006) 519-528. · Zbl 1130.42039
[31] Kolountzakis, M. N. and Matolcsi, M., Complex Hadamard matrices and the spectral set conjecture, Collect. Math.57 (2006) 281-291. · Zbl 1134.42313
[32] Łaba, I., Fuglede’s conjecture for a union of two intervals, Proc. Amer. Math. Soc.129 (2001) 2965-2972. · Zbl 0974.42011
[33] Łaba, I., The spectral set conjecture and multiplicative properties of roots of polynomials, J. Lond. Math. Soc.65 (2002) 661-671. · Zbl 1059.42005
[34] Łaba, I. and Wang, Y., On spectral Cantor measures, J. Funct. Anal.193 (2002) 409-420. · Zbl 1016.28009
[35] Lagarias, J. C. and Szabó, S., Universal spectra and Tijdeman’s conjecture on factorization of cyclic groups, J. Fourier Anal. Appl.7 (2001) 63-70. · Zbl 0988.47006
[36] Lev, N. and Matolcsi, M., The Fuglede conjecture for convex domains is true in all dimensions, Acta Math.228 (2022) 385-420. · Zbl 1492.42005
[37] Li, J. L., Analysis of \(\mu_{M , D}\)-orthogonal exponentials for the planar four-element digit sets, Math. Nachr.287 (2014) 297-312. · Zbl 1291.28009
[38] Li, J. L., A necessary and sufficient condition for the finite \(\mu_{M , D}\)-orthogonality, Sci. China Math.58 (2015) 2541-2548. · Zbl 1342.28018
[39] Liu, Z. S. and Dong, X. H., Spectrality of Moran measures with finite arithmetic digit sets, Int. J. Math.31 (2020) 2050008. · Zbl 1439.28013
[40] Liu, J. C., Dong, X. H. and Li, J. L., Non-spectral problem for the self-affine measures, J. Funct. Anal.273 (2017) 705-720. · Zbl 1366.28009
[41] Liu, J. C. and Luo, J. J., Spectral property of self-affine measures on \(\mathbb{R}^n\), J. Funct. Anal.272 (2017) 599-612. · Zbl 1351.28017
[42] Matolcsi, M., Fuglede’s conjecture fails in dimension 4, Proc. Amer. Math. Soc.133 (2005) 3021-3026. · Zbl 1087.42019
[43] Ramsey, F. P., On a problem of formal logic, Proc. Lond. Math. Soc.30 (1929) 264-286. · JFM 55.0032.04
[44] Strichartz, R. S., Mock Fourier series and transforms associated with certain Cantor measures, J. Anal. Math.81 (2000) 209-238. · Zbl 0976.42020
[45] Su, J., Liu, Y. and Liu, J. C., Non-spectrality of the planar self-affine measures with four-element digit sets, Fractals27 (2019) 1950115. · Zbl 1434.28034
[46] Su, J., Wang, Z. Y. and Chen, M. L., Orthogonal exponential functions of the planar self-affine measures with four digits, Fractals28 (2020) 2050016. · Zbl 1434.28035
[47] Tang, M. W. and Yin, F. L., Spectrality of Moran measures with four-element digit sets, J. Math. Anal. Appl.461 (2018) 354-363. · Zbl 1405.28013
[48] Tao, T., Fuglede’s conjecture is false in 5 and higher dimensions, Math. Res. Lett.11 (2004) 251-258. · Zbl 1092.42014
[49] Wang, Z. Y., Dong, X. H. and Liu, Z. S., Spectrality of certain Moran measures with three-element digit sets, J. Math. Anal. Appl.459 (2018) 743-752. · Zbl 1377.28006
[50] Xu, Y. Y. and Liu, J. C., The non-spectral property of a class of planar self-similar measures, Fractals28 (2020) 2050091. · Zbl 1445.28018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.