×

High-dimensional modeling of spatial and spatio-temporal conditional extremes using INLA and Gaussian Markov random fields. (English) Zbl 07784961

Summary: The conditional extremes framework allows for event-based stochastic modeling of dependent extremes, and has recently been extended to spatial and spatio-temporal settings. After standardizing the marginal distributions and applying an appropriate linear normalization, certain non-stationary Gaussian processes can be used as asymptotically-motivated models for the process conditioned on threshold exceedances at a fixed reference location and time. In this work, we adapt existing conditional extremes models to allow for the handling of large spatial datasets. This involves specifying the model for spatial observations at \(d\) locations in terms of a latent \(m\ll d\) dimensional Gaussian model, whose structure is specified by a Gaussian Markov random field. We perform Bayesian inference for such models for datasets containing thousands of observation locations using the integrated nested Laplace approximation, or INLA. We explain how constraints on the spatial and spatio-temporal Gaussian processes, arising from the conditioning mechanism, can be implemented through the latent variable approach without losing the computationally convenient Markov property. We discuss tools for the comparison of models via their posterior distributions, and illustrate the flexibility of the approach with gridded Red Sea surface temperature data at over 6,000 observed locations. Posterior sampling is exploited to study the probability distribution of cluster functionals of spatial and spatio-temporal extreme episodes.

MSC:

62Exx Statistical distribution theory

Software:

R-INLA; ismev; GMRFLib

References:

[1] Bakka, H.; Rue, H.; Fuglstad, G-A; Riebler, A.; Bolin, D.; Illian, J.; Krainski, E.; Simpson, D.; Lindgren, F., Spatial modeling with R-INLA: A review, Wiley Interdisciplinary Reviews: Computational Statistics, 10, 6, e1443 (2018) · Zbl 07910834
[2] Castro-Camilo, D.; Mhalla, L.; Opitz, T., Bayesian space-time gap filling for inference on hot spots: an application to Red Sea surface temperatures, Extremes, 24, 105-128 (2021) · Zbl 1466.62422
[3] Coles, SG, Regional modelling of extreme storms via max-stable processes, J. Roy. Stat. Soc.: Ser. B (Methodol.), 55, 4, 797-816 (1993) · Zbl 0781.60041
[4] Cressie, NAC, Statistics for spatial data (1993), New York: Wiley, New York
[5] Czado, C.; Gneiting, T.; Held, L., Predictive model assessment for count data, Biometrics, 65, 4, 1254-1261 (2009) · Zbl 1180.62162
[6] Davison, AC; Gholamrezaee, MM, Geostatistics of extremes, Proc. Royal Stat. Soc. (Ser. A), 468, 2138, 581-608 (2012) · Zbl 1364.86020
[7] de Fondeville, R.; Davison, AC, High-dimensional peaks-over-threshold inference, Biometrika, 105, 3, 575-592 (2018) · Zbl 1499.62158
[8] de Fondeville, R., Davison, A.C.: Functional peaks-over-threshold analysis. J. Roy. Stat. Soc.: Ser. B (Methodol.). 84(40), 1392-1422 (2022) · Zbl 07909618
[9] Dombry, C.; Engelke, S.; Oesting, M., Exact simulation of max-stable processes, Biometrika, 103, 2, 303-317 (2016) · Zbl 1499.62343
[10] Dombry, C.; Kabluchko, Z., Random tessellations associated with max-stable random fields, Bernoulli, 24, 1, 30-52 (2018) · Zbl 1388.60092
[11] Dombry, C.; Ribatet, M., Functional regular variations, Pareto processes and peaks over threshold, Statistics and Its Interface, 8, 1, 9-17 (2015) · Zbl 1386.60185
[12] Donlon, CJ; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W., The operational sea surface temperature and sea ice analysis (OSTIA) system, Remote Sens. Environ., 116, 140-158 (2012)
[13] Drees, H.; Janßen, A., Conditional extreme value models: fallacies and pitfalls, Extremes, 20, 4, 777-805 (2017) · Zbl 1380.60053
[14] Eastoe E.F. Tawn J.A.: Modelling non-stationary extremes with application to surface level ozone. J. Royal Stat. Soc. Ser. C (Appl. Stat.) 58(1) 25-45 (2009)
[15] Ferreira, A.; de Haan, L., The generalized Pareto process; with a view towards application and simulation, Bernoulli, 20, 4, 1717-1737 (2014) · Zbl 1312.60068
[16] Fine, M., Cinar, M., Voolstra, C., Safa, A., Rinkevich, B., Laffoley, D., Hilmi, N., Allemand, D.: Coral reefs of the Red Sea - challenges and potential solutions. Reg. Stud. Mar. Sci. 25, 100498 (2019)
[17] Fuglstad, GA; Simpson, D.; Lindgren, F.; Rue, H., Constructing priors that penalize the complexity of Gaussian random fields, J. Am. Stat. Assoc., 114, 525, 445-452 (2019) · Zbl 1478.62279
[18] Gneiting, T.; Raftery, AE, Strictly proper scoring rules, prediction, and estimation, J. Am. Stat. Assoc., 102, 477, 359-378 (2007) · Zbl 1284.62093
[19] Hazra, A.; Huser, R., Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model, Ann. Appl. Stat., 15, 2, 572-596 (2021) · Zbl 1478.62355
[20] Heffernan, JE; Resnick, SI, Limit laws for random vectors with an extreme component, Ann. Appl. Probab., 17, 2, 537-571 (2007) · Zbl 1125.60049
[21] Heffernan, JE; Stephenson, AG, ismev: An Introduction to Statistical Modeling of Extreme Values, R package version, 1, 42 (2018)
[22] Heffernan, JE; Tawn, JA, A conditional approach for multivariate extreme values (with discussion), J. Royal Stat. Soc. Ser. B (Stat. Methodol.), 66, 3, 497-546 (2004) · Zbl 1046.62051
[23] Huser R. Opitz T. Thibaud E.: Bridging asymptotic independence and dependence in spatial extremes using Gaussian scale mixtures. Spat. Stat. 21(A) 166-186 (2017)
[24] Huser, R.; Opitz, T.; Thibaud, E., Max-infinitely divisible models and inference for spatial extremes, Scand. J. Stat., 48, 1, 321-348 (2021) · Zbl 1467.62167
[25] Huser, R.; Wadsworth, JL, Modeling spatial processes with unknown extremal dependence class, J. Am. Stat. Assoc., 114, 525, 434-444 (2019) · Zbl 1478.62277
[26] Kabluchko, Z.; Schlather, M.; de Haan, L., Stationary max-stable fields associated to negative definite functions, Ann. Probab., 37, 5, 2042-2065 (2009) · Zbl 1208.60051
[27] Keef, C.; Tawn, JA; Lamb, R., Estimating the probability of widespread flood events, Environmetrics, 24, 1, 13-21 (2013) · Zbl 1525.62154
[28] Krainski E.T. Gómez-Rubio V. Bakka H. Lenzi A. Castro-Camilo D. Simpson D. Lindgren F. and Rue H:. Advanced spatial modeling with stochastic partial differential equations using R and INLA. Chapman and Hall/CRC (2018)
[29] Lindgren, F.; Rue, H., Bayesian spatial modelling with R-INLA, J. Stat. Softw., 63, 19, 1-25 (2015)
[30] Lindgren, F.; Rue, H.; Lindström, J., An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach, J. Royal Stat. Soc. Ser. B (Stat. Methodol.), 73, 4, 423-498 (2011) · Zbl 1274.62360
[31] Opitz T.: Latent Gaussian modeling and INLA: A review with focus on space-time applications. J. French Stat. Soc. (Special Issue on Space-Time Statistics) 158(3) 62-85 (2017) · Zbl 1378.62095
[32] Opitz, T.; Huser, R.; Bakka, H.; Rue, H., INLA goes extreme: Bayesian tail regression for the estimation of high spatio-temporal quantiles, Extremes, 21, 3, 441-462 (2018) · Zbl 1407.62167
[33] Padoan, SA; Ribatet, M.; Sisson, SA, Likelihood-based inference for max-stable processes, J. Am. Stat. Assoc., 105, 489, 263-277 (2010) · Zbl 1397.62172
[34] Richards, J.; Wadsworth, JL, Spatial deformation for non-stationary extremal dependence, Environmetrics, 32, e2671 (2021)
[35] Rue, H.; Held, L., Gaussian Markov Random Fields: Theory and Applications (2005), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1093.60003
[36] Rue H. Martino S. Chopin N.: Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. Royal Stat. Soc. Ser. B (Stat. Methodol.) 71(2) 319-392 · Zbl 1248.62156
[37] Rue, H.; Riebler, A.; Sørbye, SH; Illian, JB; Simpson, DP; Lindgren, FK, Bayesian computing with INLA: a review, Ann. Rev. Stat. Appl., 4, 395-421 (2017)
[38] Schlather, M., Models for stationary max-stable random fields, Extremes, 5, 1, 33-44 (2002) · Zbl 1035.60054
[39] Simpson, D.; Rue, H.; Riebler, A.; Martins, TG; Sørbye, SH, Penalising model component complexity: A principled, practical approach to constructing priors, Stat. Sci., 32, 1, 1-28 (2017) · Zbl 1442.62060
[40] Simpson, ES; Wadsworth, JL, Conditional modelling of spatio-temporal extremes for Red Sea surface temperatures, Spatial Statistics, 41, 100482 (2021)
[41] Smith R.L. Max-stable processes and spatial extremes. Tech. Rep. (1990)
[42] Smith R.L. Weissman I. Estimating the extremal index. J. Royal Stat. Soc. Ser. B (Methodol.) 56(3) 515-528 (1994) · Zbl 0796.62084
[43] Soubeyrand, S.; Haon-Lasportes, E., Weak convergence of posteriors conditional on maximum pseudo-likelihood estimates and implications in ABC, Statist. Probab. Lett., 107, 84-92 (2015) · Zbl 1330.62104
[44] Strokorb, K.; Ballani, F.; Schlather, M., Tail correlation functions of max-stable processes, Extremes, 18, 2, 241-271 (2015) · Zbl 1319.60118
[45] Thibaud, E.; Opitz, T., Efficient inference and simulation for elliptical Pareto processes, Biometrika, 102, 4, 855-870 (2015) · Zbl 1372.62011
[46] Tierney, L.; Kadane, JB, Accurate approximations for posterior moments and marginal densities, J. Am. Stat. Assoc., 81, 393, 82-86 (1986) · Zbl 0587.62067
[47] van Niekerk, J.; Bakka, H.; Rue, H.; Schenk, L., New frontiers in Bayesian modeling using the INLA package in R, J. Stat. Softw., 100, 2, 1-28 (2021)
[48] Vehtari, A.; Gelman, A.; Gabry, J., Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC, Stat. Comput., 27, 5, 1413-1432 (2017) · Zbl 1505.62408
[49] Wadsworth, JL; Tawn, JA, Higher-dimensional spatial extremes via single-site conditioning, Spatial Statistics, 51, 100677 (2022)
[50] Watanabe, S., A widely applicable Bayesian information criterion, J. Mach. Learn. Res., 14, 1, 867-897 (2013) · Zbl 1320.62058
[51] Wood, SN, Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. Royal Stat. Soc. Ser. B (Stat. Methodol), 73, 1, 3-36 (2011) · Zbl 1411.62089
[52] Zhang L. Shaby B.A. Wadsworth J.L.: Hierarchical transformed scale mixtures for flexible modeling of spatial extremes on datasets with many locations. J. Am. Stat. Assoc. 117(539), 1357-1369 (2022) · Zbl 1506.62381
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.