×

Clopen linear subspaces and connectedness in function spaces. (English) Zbl 07784551

Given a metric space \(X\) the authors are dealing with function spaces \(C(X)\) of real-valued continuous functions endowed with a uniform convergence \(\mathcal{T}_\mathcal{B}\) with respect to some given bornology \(\mathcal{B}\) on \(X\), thus generalizing pointwise convergence, uniform convergence on compacta and uniform convergence. In total four topologies on \(C(X)\) are considered, besides \(\mathcal{T}_\mathcal{B}\), also the Whitney topology \(\mathcal{T}^w_\mathcal{B}\) introduced by H. Whitney [Ann. Math. (2) 37, 645–680 (1936; Zbl 0015.32001)], the strong Whitney convergence \(\mathcal{T}^{sw}_\mathcal{B}\) introduced by A. Caserta [Filomat 26, No. 1, 81–91 (2012; Zbl 1289.54022)] and the strong uniform convergence \(\mathcal{T}^{s}_\mathcal{B}\) introduced by G. Beer and S. Levi [J. Math. Anal. Appl. 350, No. 2, 568–589 (2009; Zbl 1161.54003)]. The concept of a shield introduced by G. Beer et al. [Mediterr. J. Math. 10, No. 1, 529–560 (2013; Zbl 1275.54003)] plays an important role in the present study of \(\mathcal{T}^{sw}_\mathcal{B}\) and \(\mathcal{T}^{s}_\mathcal{B}\) thus yielding new characterizations for the notion of a shield.
As a starting point the authors define particular linear subspaces of \(C(X),\) which appears to be an important step in obtaining characterizations of the clopen linear subspaces of \(C(X)\) endowed with any of the four topologies considered.
Finally it is shown that \(C(X)\) endowed with any of the four topologies need not be connected and hence need not be a topological vector space. Necessary and sufficient conditions are given for the function spaces under study to be connected and locally convex.

MSC:

54C05 Continuous maps
54C35 Function spaces in general topology

References:

[1] F. W. Anderson, “Approximation in systems of real-valued continuous functions”, Trans. Amer. Math. Soc. 103 (1962), 249-271. Digital Object Identifier: 10.2307/1993659 Google Scholar: Lookup Link · Zbl 0175.14301 · doi:10.2307/1993659
[2] F. Azarpanah, F. Manshoor, and R. Mohamadian, “Connectedness and compactness in \[C(X)\] with the \[m\]-topology and generalized \[m\]-topology”, Topology Appl. 159:16 (2012), 3486-3493. Digital Object Identifier: 10.1016/j.topol.2012.08.010 Google Scholar: Lookup Link zbMATH: 1255.54009 · Zbl 1255.54009 · doi:10.1016/j.topol.2012.08.010
[3] G. Beer, “On metric boundedness structures”, Set-Valued Anal. 7:3 (1999), 195-208. zbMATH: 0951.54025 · Zbl 0951.54025
[4] G. Beer, “Product metrics and boundedness”, Appl. Gen. Topol. 9:1 (2008), 133-142. Digital Object Identifier: 10.4995/agt.2008.1873 Google Scholar: Lookup Link · doi:10.4995/agt.2008.1873
[5] G. Beer, “The Alexandroff property and the preservation of strong uniform continuity”, Appl. Gen. Topol. 11:2 (2010), 117-133. Digital Object Identifier: 10.4995/agt.2010.1712 Google Scholar: Lookup Link zbMATH: 1252.54004 · Zbl 1252.54004 · doi:10.4995/agt.2010.1712
[6] G. Beer and M. I. Garrido, “Bornologies and locally Lipschitz functions”, Bull. Aust. Math. Soc. 90:2 (2014), 257-263. Digital Object Identifier: 10.1017/S0004972714000215 Google Scholar: Lookup Link zbMATH: 1318.26004 · Zbl 1318.26004 · doi:10.1017/S0004972714000215
[7] G. Beer and S. Levi, “Strong uniform continuity”, J. Math. Anal. Appl. 350:2 (2009), 568-589. Digital Object Identifier: 10.1016/j.jmaa.2008.03.058 Google Scholar: Lookup Link zbMATH: 1161.54003 · Zbl 1161.54003 · doi:10.1016/j.jmaa.2008.03.058
[8] G. Beer and S. Levi, “Total boundedness and bornologies”, Topology Appl. 156:7 (2009), 1271-1288. Digital Object Identifier: 10.1016/j.topol.2008.12.030 Google Scholar: Lookup Link zbMATH: 1167.54008 · Zbl 1167.54008 · doi:10.1016/j.topol.2008.12.030
[9] G. Beer and S. Levi, “Uniform continuity, uniform convergence, and shields”, Set-Valued Var. Anal. 18:3-4 (2010), 251-275. Digital Object Identifier: 10.1007/s11228-010-0163-7 Google Scholar: Lookup Link · Zbl 1236.54012 · doi:10.1007/s11228-010-0163-7
[10] G. Beer, C. Costantini, and S. Levi, “Bornological convergence and shields”, Mediterr. J. Math. 10:1 (2013), 529-560. Digital Object Identifier: 10.1007/s00009-011-0162-4 Google Scholar: Lookup Link zbMATH: 1275.54003 · Zbl 1275.54003 · doi:10.1007/s00009-011-0162-4
[11] A. Caserta, “Strong Whitney convergence”, Filomat 26:1 (2012), 81-91. Digital Object Identifier: 10.2298/FIL1201081C Google Scholar: Lookup Link · Zbl 1289.54022 · doi:10.2298/FIL1201081C
[12] A. Caserta, G. Di Maio, and L. Holá, “Arzelà’s theorem and strong uniform convergence on bornologies”, J. Math. Anal. Appl. 371:1 (2010), 384-392. Digital Object Identifier: 10.1016/j.jmaa.2010.05.042 Google Scholar: Lookup Link · Zbl 1202.54004 · doi:10.1016/j.jmaa.2010.05.042
[13] A. Caserta, G. Di Maio, and L. D. R. Kočinac, “Bornologies, selection principles and function spaces”, Topology Appl. 159:7 (2012), 1847-1852. Digital Object Identifier: 10.1016/j.topol.2011.04.025 Google Scholar: Lookup Link · Zbl 1253.54021 · doi:10.1016/j.topol.2011.04.025
[14] T. K. Chauhan and V. Jindal, “Cardinal functions, bornologies and strong Whitney convergence”, Bull. Belg. Math. Soc. Simon Stevin 29:4 (2022), 491-507. Digital Object Identifier: 10.36045/j.bbms.220204 Google Scholar: Lookup Link zbMATH: 07739254 · Zbl 1526.54002 · doi:10.36045/j.bbms.220204
[15] T. K. Chauhan and V. Jindal, “Strong Whitney and strong uniform convergences on a bornology”, J. Math. Anal. Appl. 505:1 (2022), art. id. 125634. Digital Object Identifier: 10.1016/j.jmaa.2021.125634 Google Scholar: Lookup Link zbMATH: 07412987 · Zbl 07412987 · doi:10.1016/j.jmaa.2021.125634
[16] T. K. Chauhan and V. Jindal, “Strong Whitney convergence on bornologies”, Filomat 36:7 (2022), 2427-2438. Digital Object Identifier: 10.2298/FIL2207427C Google Scholar: Lookup Link · Zbl 1526.54002 · doi:10.2298/FIL2207427C
[17] G. Di Maio, L. Holá, D. Holý, and R. A. McCoy, “Topologies on the space of continuous functions”, Topology Appl. 86:2 (1998), 105-122. Digital Object Identifier: 10.1016/S0166-8641(97)00114-4 Google Scholar: Lookup Link · Zbl 0940.54023 · doi:10.1016/S0166-8641(97)00114-4
[18] R. Engelking, General topology, 2nd ed., Sigma Series in Pure Mathematics 6, Heldermann Verlag, 1989. MathSciNet: MR26239 · Zbl 0684.54001
[19] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, 1960. zbMATH: 0327.46040 · Zbl 0327.46040
[20] J. Gómez-Pérez and W. W. McGovern, “The \[m\]-topology on \[C_m(X)\] revisited”, Topology Appl. 153:11 (2006), 1838-1848. Digital Object Identifier: 10.1016/j.topol.2005.06.016 Google Scholar: Lookup Link · Zbl 1117.54045 · doi:10.1016/j.topol.2005.06.016
[21] E. Hewitt, “Rings of real-valued continuous functions, I”, Trans. Amer. Math. Soc. 64 (1948), 45-99. Digital Object Identifier: 10.2307/1990558 Google Scholar: Lookup Link zbMATH: 0032.28603 · Zbl 0032.28603 · doi:10.2307/1990558
[22] M. W. Hirsch, Differential topology, Graduate Texts in Mathematics 33, Springer, 1976. Digital Object Identifier: 10.1007/978-1-4684-9449-5 Google Scholar: Lookup Link · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[23] H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland Mathematics Studies 26, North-Holland, 1977. · Zbl 0359.46004
[24] L. Holá, “Complete metrizability of topologies of strong uniform convergence on bornologies”, J. Math. Anal. Appl. 387:2 (2012), 770-775. Digital Object Identifier: 10.1016/j.jmaa.2011.09.031 Google Scholar: Lookup Link zbMATH: 1234.54025 · Zbl 1234.54025 · doi:10.1016/j.jmaa.2011.09.031
[25] L. Holá and V. Jindal, “On graph and fine topologies”, Topology Proc. 49 (2017), 65-73. · Zbl 1360.54019
[26] L. Holá and B. Novotný, “Cardinal functions, bornologies and function spaces”, Ann. Mat. Pura Appl. (4) 193:5 (2014), 1319-1327. Digital Object Identifier: 10.1007/s10231-013-0330-1 Google Scholar: Lookup Link · Zbl 1302.54007 · doi:10.1007/s10231-013-0330-1
[27] L. Holá and B. Novotný, “Topology of uniform convergence and \[m\]-topology on \[C(X)\]”, Mediterr. J. Math. 14:2 (2017), art. id. 70. Digital Object Identifier: 10.1007/s00009-017-0861-6 Google Scholar: Lookup Link · Zbl 1377.54016 · doi:10.1007/s00009-017-0861-6
[28] V. Jindal and A. Jindal, “Connectedness of the fine topology”, Topology Proc. 55 (2020), 215-226. zbMATH: 1444.54010 · Zbl 1444.54010
[29] J. L. Kelley, General topology, Van Nostrand, 1955. · Zbl 0066.16604
[30] S. Kundu and A. B. Raha, “The bounded-open topology and its relatives”, Rend. Istit. Mat. Univ. Trieste 27:1-2 (1995), 61-77. · Zbl 0870.54014
[31] A. Lechicki, S. Levi, and A. Spakowski, “Bornological convergences”, J. Math. Anal. Appl. 297:2 (2004), 751-770. Digital Object Identifier: 10.1016/j.jmaa.2004.04.046 Google Scholar: Lookup Link zbMATH: 1062.54012 · Zbl 1062.54012 · doi:10.1016/j.jmaa.2004.04.046
[32] R. A. McCoy, “Fine topology on function spaces”, Internat. J. Math. Math. Sci. 9:3 (1986), 417-424. Digital Object Identifier: 10.1155/S0161171286000534 Google Scholar: Lookup Link zbMATH: 0614.54014 · Zbl 0614.54014 · doi:10.1155/S0161171286000534
[33] R. A. McCoy and I. Ntantu, Topological properties of spaces of continuous functions, Lecture Notes in Mathematics 1315, Springer, 1988. Digital Object Identifier: 10.1007/BFb0098389 Google Scholar: Lookup Link · Zbl 0647.54001 · doi:10.1007/BFb0098389
[34] R. A. McCoy, S. Kundu, and V. Jindal, Function spaces with uniform, fine and graph topologies, Springer, 2018. Digital Object Identifier: 10.1007/978-3-319-77054-3 Google Scholar: Lookup Link zbMATH: 1395.54001 · Zbl 1395.54001 · doi:10.1007/978-3-319-77054-3
[35] S. E. Nokhrin and A. V. Osipov, “On the coincidence of set-open and uniform topologies”, Proc. Steklov Inst. Math. 267 (2009), S184-S191. Digital Object Identifier: 10.1134/S0081543809070165 Google Scholar: Lookup Link · Zbl 1235.54010 · doi:10.1134/S0081543809070165
[36] A. V. Osipov, “The \[C\]-compact-open topology on function spaces”, Topology Appl. 159:13 (2012), 3059-3066. Digital Object Identifier: 10.1016/j.topol.2012.05.018 Google Scholar: Lookup Link · Zbl 1250.54019 · doi:10.1016/j.topol.2012.05.018
[37] H. Whitney, “Differentiable manifolds”, Ann. of Math. (2) 37:3 (1936), 645-680. Digital Object Identifier: 10.2307/1968482 Google Scholar: Lookup Link zbMATH: 62.1454.01 · JFM 62.1454.01 · doi:10.2307/1968482
[38] S. Willard, General topology, Addison-Wesley, 1970. · Zbl 0205.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.