×

Space-time Integer-valued ARMA modelling for time series of counts. (English) Zbl 07784501

Summary: This paper introduces a new class of space-time integer-valued ARMA models referred to as STINARMA. This class arises as the natural space-time extension of the INARMA models and, simultaneously, as the integer-valued counterpart of the conventional STARMA models. In this work, the moving average subclass STINMA\((q_{m_{1}}, \ldots, m_q)\) is studied in detail. Particular attention is given to the derivation of first- and second-order moments, including space-time autocorrelations. Due to its large potential use in real-data applications, the Poisson STINMA\((1_1)\) process is analyzed in further detail. Estimation methods are also addressed and their performance is demonstrated through a simulation study and by analysing the daily number of hospital admissions observed over time in three Portuguese locations.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62H11 Directional data; spatial statistics
62H12 Estimation in multivariate analysis
62P12 Applications of statistics to environmental and related topics
68T09 Computational aspects of data analysis and big data

References:

[1] ALDOR-NOIMAN, S., BROWN, L. D., FOX, E. B. and STINE, R. A. (2016). Spatio-Temporal Low Count Processes with Application to Violent Crime Events. Statistica Sinica 26 1587-1610. Digital Object Identifier: 10.5705/ss.2014.217t Google Scholar: Lookup Link MathSciNet: MR3586230 · Zbl 1356.62131 · doi:10.5705/ss.2014.217t
[2] ALEKSANDROV, B. and WEIß, C. H. (2020). Parameter Estimation and Diagnostic Tests for INMA(1) Processes. TEST 29 196-232. MathSciNet: MR4063388 · Zbl 1460.62142
[3] SANTOS BAQUERO, O. (2019). ggsn: North Symbols and Scale Bars for Maps Created with ‘ggplot2’ or ‘ggmap’ R package version 0.5.0.
[4] BATES, D. and MAECHLER, M. (2021). Matrix: Sparse and Dense Matrix Classes and Methods R package version 1.4-0.
[5] BENGTSSON, H. (2021). R.utils: Various Programming Utilities R package version 2.11.0.
[6] BOROVKOVA, S., LOPUHAA, H. and NURANI, B. (2002). Generalized STAR Model with Experimental Weights. In Proceedings of the 17th International Workshop on Statistical Modelling 139-147.
[7] BRÄNNÄS, K. and HALL, A. (2001). Estimation in Integer-Valued Moving Average Models. Applied Stochastic Models in Business and Industry 17 277-291. MathSciNet: MR1864091 · Zbl 0979.62066
[8] BRÄNNÄS, K. and QUORESHI, S. (2010). Integer-Valued Moving Average Modelling of the Number of Transactions in Stocks. Applied Financial Economics 20 1429-1440.
[9] BUTEIKIS, A. and LEIPUS, R. (2020). An Integer-Valued Autoregressive Process for Seasonality. Journal of Statistical Computation and Simulation 90 391-411. MathSciNet: MR4044916 · Zbl 07194291
[10] MICROSOFT CORPORATION and WESTON, S. (2020). doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package R package version 1.0.16.
[11] DAVIS, R. A., HOLAN, S. H., LUND, R. and RAVISHANKER, N. (2016). Handbook of Discrete-valued Time Series. CRC Press. MathSciNet: MR3642975 · Zbl 1331.62003
[12] DAVIS, R. A., FOKIANOS, K., HOLAN, S. H., JOE, H., LIVSEY, J., LUND, R., PIPIRAS, V. and RAVISHANKER, N. (2021). Count Time Series: A Methodological Review. Journal of the American Statistical Association 116 1533-1547. MathSciNet: MR4309291 · Zbl 1510.62356
[13] DION, J. P., GAUTHIER, G. and LATOUR, A. (1995). Branching Processes with Immigration and Integer-Valued Time Series. Serdica Mathematical Journal 21 123-136. MathSciNet: MR1338812 · Zbl 0819.62067
[14] EDDELBUETTEL, D. and BALAMUTA, J. J. (2018). Extending R with C++: A Brief Introduction to Rcpp. The American Statistician 72 28-36. Digital Object Identifier: 10.1080/00031305.2017.1375990 Google Scholar: Lookup Link MathSciNet: MR3790565 · Zbl 07663915 · doi:10.1080/00031305.2017.1375990
[15] EDDELBUETTEL, D. and SANDERSON, C. (2014). RcppArmadillo: Accelerating R with high-performance C++ linear algebra. Computational Statistics and Data Analysis 71 1054-1063. MathSciNet: MR3132026 · Zbl 1471.62055
[16] Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC Press. MathSciNet: MR1270903 · Zbl 0835.62038
[17] FRANKE, J. and SUBBA RAO, T. (1993). Multivariate First-Order Integer-Valued Autoregressions Technical Report, University of Kaiserslautern.
[18] GERBER, F. and FURRER, R. (2019). optimParallel: An R Package Providing a Parallel Version of the L-BFGS-B Optimization Method. The R Journal 11 352-358. Digital Object Identifier: 10.32614/RJ-2019-030 Google Scholar: Lookup Link · doi:10.32614/RJ-2019-030
[19] GHODSI, A. (2015). Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR \((1, 1))\) Model. Journal of the Iranian Statistical Society 14 15-36. Digital Object Identifier: 10.7508/jirss.2015.02.002 Google Scholar: Lookup Link MathSciNet: MR3518270 · Zbl 1412.62125 · doi:10.7508/jirss.2015.02.002
[20] GHODSI, A., SHITAN, M. and BAKOUCH, H. S. (2012). A First-Order Spatial Integer-Valued Autoregressive SINAR (1, 1) Model. Communications in Statistics-Theory and Methods 41 2773-2787. MathSciNet: MR2946646 · Zbl 1270.62128
[21] GIRONDOT, M. (2021). HelpersMG: Tools for Environmental Analyses, Ecotoxicology and Various R Functions R package version 4.8.
[22] HUDA, N., MUKHAIYAR, U. and PASARIBU, U. (2021). The Approximation of GSTAR Model for Discrete Cases through INAR Model. In Journal of Physics: Conference Series 1722 012100. IOP Publishing.
[23] JOWAHEER, V., SUNECHER, Y. and MAMODE KHAN, N. (2016). A Non-Stationary BINAR(1) Process with Negative Binomial Innovations for Modeling the Number of Goals in the First and Second half: The Case of Arsenal Fotball Club. Communications in Statistics: Case Studies, Data Analysis and Applications 2 21-33. MathSciNet: MR3523164
[24] LATOUR, A. (1997). The Multivariate GINAR (p) Process. Advances in Applied Probability 29 228-248. MathSciNet: MR1432938 · Zbl 0871.62073
[25] MAHAMUNULU, D. (1967). A Note on Regression in the Multivariate Poisson Distribution. Journal of the American Statistical Association 62 251-258. MathSciNet: MR0216613 · Zbl 0147.37802
[26] MARTIN, R. L. and OEPPEN, J. (1975). The Identification of Regional Forecasting Models using Space: Time Correlation Functions. Transactions of the Institute of British Geographers 95-118.
[27] MARTINS, A., SCOTTO, M. G., DEUS, R., MONTEIRO, A. and GOUVEIA, S. (2021). Association between Respiratory Hospital Admissions and Air quality in Portugal: A Count Time Series Approach. PLOS One 16 e0253455.
[28] MCKENZIE, E. (1988). Some ARMA Models for Dependent Sequences of Poisson Counts. Advances in Applied Probability 20 822-835. MathSciNet: MR0968000 · Zbl 0664.62089
[29] PEBESMA, E. (2018). Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10 439-446. Digital Object Identifier: 10.32614/RJ-2018-009 Google Scholar: Lookup Link · doi:10.32614/RJ-2018-009
[30] PEDELI, X. and KARLIS, D. (2011). A Bivariate INAR(1) Process with Application. Statistical modelling 11 325-349. MathSciNet: MR2906704 · Zbl 1420.62393
[31] PEDELI, X. and KARLIS, D. (2013). Some Properties of Multivariate INAR(1) Processes. Computational Statistics & Data Analysis 67 213-225. MathSciNet: MR3079598 · Zbl 1471.62158
[32] PEDERSEN, T. L. (2019). ggforce: Accelerating ‘ggplot2’ R package version 0.3.1.
[33] PEDERSEN, T. L. (2020). patchwork: The Composer of Plots R package version 1.1.1.
[34] PFEIFER, P. E. (1979). Spatial-Dynamic Modeling, PhD thesis, Georgia Institute of Technology.
[35] PFEIFER, P. E. and DEUTSCH, S. J. (1980a). A Three-Stage Iterative Procedure for Space-Time Modeling. Technometrics 22 35-47. · Zbl 0429.62066
[36] PFEIFER, P. E. and DEUTSCH, S. J. (1980b). Identification and Interpretation of First Order Space-Time ARMA Models. Technometrics 22 397-408. · Zbl 0459.62078
[37] QUORESHI, A. S. (2006). Bivariate Time Series Modeling of Financial Count Data. Communications in Statistics-Theory and Methods 35 1343-1358. MathSciNet: MR2328481 · Zbl 1105.62107
[38] QUORESHI, A. S. (2008). A Vector Integer-Valued Moving Average Model for High Frequency Financial Count Data. Economics Letters 101 258-261.
[39] SANTOS, C., PEREIRA, I. and SCOTTO, M. G. (2021). On the Theory of Periodic Multivariate INAR Processes. Statistical Papers 62 1291-1348. MathSciNet: MR4262195 · Zbl 1477.62252
[40] SCOTTO, M. G., WEIß, C. H. and GOUVEIA, S. (2015). Thinning-Based Models in the Analysis of Integer-Valued Time Series: A Review. Statistical Modelling 15 590-618. MathSciNet: MR3441230 · Zbl 07259004
[41] SCOTTO, M. G., WEIß, C. H., SILVA, M. E. and PEREIRA, I. (2014). Bivariate Binomial Autoregressive Models. Journal of Multivariate Analysis 125 233-251. MathSciNet: MR3163841 · Zbl 1283.62188
[42] SILVA, I., SILVA, M. E. and TORRES, C. (2020). Inference for Bivariate Integer-Valued Moving Average Models based on Binomial Thinning Operation. Journal of Applied Statistics 47 2546-2564. MathSciNet: MR4149569 · Zbl 1521.62479
[43] SOETAERT, K. (2009). rootSolve: Nonlinear Root Finding, Equilibrium and Steady-State Analysis of Ordinary Differential Equations R package 1.6.
[44] STEUTEL, F. W. and VAN HARN, K. (1979). Discrete Analogues of Self-Decomposability and Stability. The Annals of Probability 893-899. MathSciNet: MR0542141 · Zbl 0418.60020
[45] SUBBA RAO, T. and COSTA ANTUNES, A. M. (2004). Spatio-Temporal Modelling of Temperature Time Series: A Comparative Study. In Time series analysis and applications to geophysical systems 123-150. Springer. MathSciNet: MR2111482 · Zbl 1061.62186
[46] SUNECHER, Y. (2021). Application of the BINARMA(1, 1) Model with NB Innovations on Accident Data. In 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) 1-4. IEEE.
[47] SUNECHER, Y., MAMODE KHAN, N. and JOWAHEER, V. (2017). Estimating the Parameters of a BINMA Poisson Model for a Non-Stationary Bivariate Time Series. Communications in Statistics-Simulation and Computation 46 6803-6827. MathSciNet: MR3764940 · Zbl 1384.65016
[48] SUNECHER, Y., MAMODE KHAN, N. and JOWAHEER, V. (2019). The Non-Stationary BINARMA(1, 1) Process with Poisson Innovations: An Application on Accident Data. International Journal of Mathematical and Computational Sciences 13 193-196.
[49] SUNECHER, Y., MAMODE KHAN, N. and JOWAHEER, V. (2020). BINMA(1) Model with COM-Poisson Innovations: Estimation and Application. Communications in Statistics-Simulation and Computation 49 1631-1652. MathSciNet: MR4120951 · Zbl 07553270
[50] TABANDEH, A. and GHODSI, A. (2022). First-Order Spatial Random Coefficient Non-Negative Integer-Valued Autoregressive (SRCINAR(1,1)) model. Communications in Statistics - Simulation and Computation 0 1-13. Digital Object Identifier: 10.1080/03610918.2022.2083164 Google Scholar: Lookup Link · doi:10.1080/03610918.2022.2083164
[51] R CORE TEAM (2021). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria.
[52] WEIß, C. H. (2008). Serial Dependence and Regression of Poisson INARMA Models. Journal of Statistical Planning and Inference 138 2975-2990. MathSciNet: MR2442225 · Zbl 1140.62069
[53] WEIß, C. H. (2012). Fully Observed INAR (1) Processes. Journal of Applied Statistics 39 581-598. MathSciNet: MR2880436 · Zbl 1514.62175
[54] WEIß, C. H. (2021). Stationary Count Time Series Models. Wiley Interdisciplinary Reviews: Computational Statistics 13 e1502. MathSciNet: MR4186769 · Zbl 1461.62163
[55] WEIß, C. H., FELD, M. H.-J., MAMODE KHAN, N. and SUNECHER, Y. (2019). INARMA Modeling of Count Time Series. Stats 2 284-320.
[56] WICKHAM, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. · Zbl 1397.62006
[57] WICKHAM, H., FRANÇOIS, R., HENRY, L. and MÜLLER, K. (2020). dplyr: A Grammar of Data Manipulation R package version 1.0.2.
[58] ZUCCHINI, W. and MACDONALD, I. L. (2009). Hidden Markov Models for Time Series: an Introduction using R. Chapman and Hall/CRC. MathSciNet: MR2523850 · Zbl 1180.62130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.