×

A structural approach to Gudermannian functions. (English) Zbl 07783581

Summary: The Gudermannian function relates the circular angle to the hyperbolic one when their cosines are reciprocal. Whereas both such angles are halved areas of circular and hyperbolic sectors, it is natural to develop similar considerations within the study of a class of curves images of maps with constant areal speed. After a brief exposition of some use of the Gudermannian in applied sciences, we proceed to illustrate the class of curves, called Keplerian curves, which can be parametrised by a map \(\mathbf{m}= (\cos_{\mathbf{m}}, \sin_{\mathbf{m}})\) whose areal speed is 1. In the next Sections, after a detailed study of p-circular and hyperbolic Fermat curves \(\mathcal{F}_p\) and \(\mathcal{F}^*_p\), we define the \(p\)-Gudermannian as the primitive of the derivative of the \(p\)-hyperbolic sine divided by the square of the p-hyperbolic cosine: all the analogues of the classical identities are proven. Having realised that such curves correspond to each other by means a homology, we extend our study to a wide class of Keplerian curves and their homologues; once again, defined the Gudermannian in an identical manner, all the analogues of classical identities subsist. Below, three examples are detailed. The last paragraph further extends this consideration, eliminating the hypothesis that the curves are parametrised by maps with areal speed 1. The Appendix illustrates integrating techniques for systems defining the Fermat curves and determining the inverse of their tangent function.

MSC:

26A06 One-variable calculus
33B10 Exponential and trigonometric functions

Software:

OEIS; DLMF

References:

[1] Adams, OS, Elliptic Functions Applied to Conformal World Maps (1925), Washington: Washington Government printing office, Washington · JFM 51.0759.04
[2] Altun, E.; Alizadeh, M.; Yousof, HM; Hamedani, GG, The Gudermannian generated family of distributions with characterisations, regression models and applications, Stud. Sci. Math. Hung., 59, 2, 93-115 (2022) · Zbl 1524.62083
[3] Borwein, JM; Borwein, PB, Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (1987), New York: John Wiley & Sons, New York · Zbl 0611.10001
[4] Boyd, JP, New series for the cosine lemniscate function and the polynomialization of the lemniscate integral, J. Comput. Appl. Math., 235, 8, 1941-1955 (2011) · Zbl 1209.65028 · doi:10.1016/j.cam.2010.09.020
[5] Burgoyne, FD, Generalized trigonometric functions, Math. Comput., 18, 86, 314-316 (1964) · Zbl 0123.34503 · doi:10.1090/S0025-5718-1964-0164066-5
[6] Byrd, PF; Friedman, MD, Handbook of Elliptic Integrals for Engineers and Scientists (1971), New York: Springer, New York · Zbl 0213.16602 · doi:10.1007/978-3-642-65138-0
[7] Cayley, A., On the elliptic function solution of the equation \(x^3+y^3-1=0\), Proc. Camb. Philos. Soc., 4, 106-109 (1883) · JFM 13.0366.01
[8] Dixon, AC, On the doubly periodic functions arising out of the curve \(x^3+y^3 - 3\alpha \, xy = 1\), Q. J. Pure Appl. Math., 24, 167-233 (1890) · JFM 21.0490.01
[9] Gambini, A.; Nicoletti, G.; Ritelli, D., Keplerian trigonometry, Monatsh Math., 195, 1, 55-72 (2021) · Zbl 1471.33001 · doi:10.1007/s00605-021-01512-0
[10] Gambini, A., Nicoletti, G., Ritelli, D.: The Wallis products for Fermat curves. Vietnam J. Math., Page to appear (2023)
[11] Gradshteyn, IS; Ryzhik, IM, Table of Integrals, Series, and Products (2007), New York: Academic Press, New York · Zbl 1208.65001
[12] Grammel, R., Eine Verallgemeinerung der Kreis-und Hyperbelfunktionen, Arch. Appl. Mech., 16, 3, 188-200 (1948) · Zbl 0033.05802
[13] Hiriart-Urruty, J.B.: Des fonctions ... pas si particulières que ça: celles de Lambert, Gudermann et Airy. Quadrature 101, 40-45 (2016) · Zbl 1365.33007
[14] Kaplan, M.; Rasekhi, M.; Saber, MM; Hamedani, GG; El-Raouf, MMA; Aldallal, R.; Gemeay, AM, Approximate maximum likelihood estimations for the parameters of the generalized Gudermannian distribution and its characterizations, J. Math., 2022, 4092576 (2022)
[15] Key, E., Disks, shells, and integrals of inverse functions, Coll. Math. J., 25, 2, 136-138 (1994) · doi:10.1080/07468342.1994.11973597
[16] King, LV, On the Direct Numerical Calculation of Elliptic Functions and Integrals (1924), Cambridge: University Press, Cambridge · JFM 51.0292.07
[17] Lang, J.; Edmunds, DE, Eigenvalues, Embeddings and Generalised Trigonometric Eigenvalues, Embeddings and Generalised Trigonometric Functions (2011), Berlin: Springer, Berlin · Zbl 1220.47001 · doi:10.1007/978-3-642-18429-1
[18] Legendre, AM, Traité des fonctions elliptiques et des intégrales Euleriennes (1825), Paris: Tome premier. Imprimerie de Huzard-Courcier, Paris
[19] Mingari Scarpello, G.; Ritelli, D., Circular motion of a particle under friction and hydraulic dissipation, Tamkang J. Math., 36, 1, 1-16 (2005) · Zbl 1112.70015 · doi:10.5556/j.tkjm.36.2005.130
[20] Mondaini, L., The rise of solitons in sine-Gordon field theory: from Jacobi amplitude to Gudermannian function, J. Appl. Math. Phys., 2, 13, 1202-1206 (2014) · doi:10.4236/jamp.2014.213141
[21] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.1.8 of 2022-12-15. F.W.J. Olver, A.B. Olde Daalhuis, D.W. Lozier, B.I. Schneider, R.F. Boisvert, C.W. Clark, B.R. Miller, B.V. Saunders, H.S. Cohl, and M.A. McClain, eds
[22] Peters, JMH, The Gudermannian, Math. Gaz., 68, 445, 192-196 (1984) · doi:10.2307/3616342
[23] Poodiack, RD, Squigonometry, hyperellipses, and supereggs, Math. Mag., 89, 2, 92-102 (2016) · Zbl 1398.51044 · doi:10.4169/math.mag.89.2.92
[24] Rickey, VF; Tuchinsky, PM, An application of geography to mathematics: history of the integral of the secant, Math. Mag., 53, 3, 162-166 (1980) · Zbl 0444.01005 · doi:10.1080/0025570X.1980.11976846
[25] Robertson, JS, Gudermann and the simple pendulum, Coll. Math. J., 28, 4, 271-276 (1997) · Zbl 0995.01524 · doi:10.1080/07468342.1997.11973874
[26] Robinson, P.L.: Higher trigonometry: a class of nonlinear systems. arxiv preprint (2019)
[27] Robinson, P.L.: The Dixonian elliptic function. arxiv preprint (2019)
[28] Romakina, LN, The inverse Gudermannian in the hyperbolic geometry, Integral Transform. Spec. Funct., 29, 5, 384-401 (2018) · Zbl 1388.51007 · doi:10.1080/10652469.2018.1441296
[29] Sabir, Z.; Wahab, HA; Guirao, JLG, A novel design of Gudermannian function as a neural network for the singular nonlinear delayed, prediction and pantograph differential models, Math. Biosci. Eng., 19, 1, 663-687 (2022) · doi:10.3934/mbe.2022030
[30] Schlömilch, O., Compendium der höheren Analysis (1853), Braunschweig: Vieweg, Braunschweig · JFM 13.0202.01
[31] Selberg, A.; Chowla, S., On Epstein’s zeta-function, J. Reine Angew. Math., 227, 86, 110 (1967) · Zbl 0166.05204
[32] The On-Line Encyclopedia of Integer Sequences. https://oeis.org/wiki/Main_Page. N. J. A. Sloane · Zbl 1494.68308
[33] van Fossen Conrad, E., Flajolet, P.: The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion. Séminaire Lotharingien de Combinatoire 54(B54g), 1-44 (2006) · Zbl 1179.33034
[34] Whittaker, ET; Watson, GN, A Course of Modern Analysis (1902), Cambridge: Cambridge University Press, Cambridge · Zbl 1458.30002
[35] Wood, WE, Squigonometry, Math. Mag., 84, 4, 257-265 (2011) · Zbl 1227.97029 · doi:10.4169/math.mag.84.4.257
[36] Wood, WE; Poodiack, RD, Squigonometry: The Study of Imperfect Circles (2022), Cham: Springer, Cham · Zbl 07582504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.