×

Probabilistic analysis of optimization problems on sparse random shortest path metrics. (English) Zbl 07777572

Summary: Simple heuristics for (combinatorial) optimization problems often show a remarkable performance in practice. Worst-case analysis often falls short of explaining this performance. Because of this, “beyond worst-case analysis” of algorithms has recently gained a lot of attention, including probabilistic analysis of algorithms. The instances of many (combinatorial) optimization problems are essentially a discrete metric space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been conducted on instances drawn from Euclidean space, which provides a structure that is usually heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little work has been done on metric instances drawn from other, more realistic, distributions. Some initial results have been obtained in recent years, where random shortest path metrics generated from dense graphs (either complete graphs or Erdős-Rényi random graphs) have been used so far. In this paper we extend these findings to sparse graphs, with a focus on sparse graphs with ‘fast growing cut sizes’, i.e. graphs for which \(|\delta (U)|=\Omega (|U|^\varepsilon )\) for some constant \(\varepsilon \in (0,1)\) for all subsets \(U\) of the vertices, where \(\delta (U)\) is the set of edges connecting \(U\) to the remaining vertices. A random shortest path metric is constructed by drawing independent random edge weights for each edge in the graph and setting the distance between every pair of vertices to the length of a shortest path between them with respect to the drawn weights. For such instances generated from a sparse graph with fast growing cut sizes, we prove that the greedy heuristic for the minimum distance maximum matching problem, and the nearest neighbor and insertion heuristics for the traveling salesman problem all achieve a constant expected approximation ratio. Additionally, for instances generated from an arbitrary sparse graph, we show that the 2-opt heuristic for the traveling salesman problem also achieves a constant expected approximation ratio.

MSC:

68Wxx Algorithms in computer science
05Cxx Graph theory

References:

[1] Auffinger, A., Damron, M., Hanson, J.: 50 years of first passage percolation. In: arXiv e-prints, arXiv:1511.03262 [math.PR] (2015) · Zbl 1452.60002
[2] Aven, T., Upper (lower) bounds on the mean of the maximum (minimum) of a number of random variables, J. Appl. Probab., 22, 3, 723-728 (1985) · Zbl 0576.60016 · doi:10.2307/3213876
[3] Avis, D.; Davis, B.; Steele, JM, Probabilistic analysis of a Greedy Heuristic for Euclidean matching, Probab. Eng. Inf. Sci., 2, 2, 143-156 (1988) · Zbl 1134.90468 · doi:10.1017/S0269964800000711
[4] Bafna, V.; Kalyanasundaram, B.; Pruhs, K., Not all insertion methods yields constant approximate tours in the Euclidean plane, Theor. Comput. Sci., 125, 2, 345-353 (1994) · Zbl 0802.90108 · doi:10.1016/0304-3975(94)90257-7
[5] Bentley, J. L., Saxe, J.B.: An analysis of two Heuristics for the Euclidean traveling salesman problem. In: Proceedings of the Eighteenth Annual Allerton Conference on Communication, Control, and Computing, October 8-10, 1980. Allerton House, Monticello, Illinois (1980) pp. 41-49 · Zbl 0519.00021
[6] Bollobás, B.; Leader, I., Edge-isoperimetric inequalities in the grid, Combinatorica, 11, 4, 299-314 (1991) · Zbl 0755.05045 · doi:10.1007/BF01275667
[7] Bon, J-L; Păltănea, E., Ordering properties of convolutions of exponential random variables, Lifetime Data Anal., 5, 2, 185-192 (1999) · Zbl 0967.60017 · doi:10.1023/A:1009605613222
[8] Bringmann, K.; Engels, C.; Manthey, B.; Rao, BVR, random shortest paths: non-Euclidean instances for metric optimization problems, Algorithmica, 73, 1, 42-62 (2015) · Zbl 1319.90072 · doi:10.1007/s00453-014-9901-9
[9] Chandra, B.; Karloff, H.; Tovey, C., New results on the old k-opt algorithm for the traveling salesman problem, SIAM J. Comput., 28, 6, 1998-2029 (1999) · Zbl 0936.68052 · doi:10.1137/S0097539793251244
[10] Davis, R.; Prieditis, A., The expected length of a shortest path, Inf. Process. Lett., 46, 3, 135-141 (1993) · Zbl 0784.68064 · doi:10.1016/0020-0190(93)90059-I
[11] Engels, C.; Manthey, B., Average-case approximation ratio of the 2-opt algorithm for the TSP, Oper. Res. Lett., 37, 2, 83-84 (2009) · Zbl 1159.90494 · doi:10.1016/j.orl.2008.12.002
[12] Englert, M.; Röglin, H.; Vöcking, B., Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP, Algorithmica, 68, 1, 190-264 (2014) · Zbl 1358.68131 · doi:10.1007/s00453-013-9801-4
[13] Frieze, AM, On random symmetric travelling salesman problems, Math. Oper. Res., 29, 4, 878-890 (2004) · Zbl 1082.05517 · doi:10.1287/moor.1040.0105
[14] Frieze, A. M., Yukich, J. E.: Probabilistic analysis of the TSP. In: Gutin, G. and Punnen, A. P. (eds) The Traveling Salesman Problem and Its Variations. Springer, Boston, MA, Chap. 7, pp. 257-307 (2007) doi:10.1007/0-306-48213-4_7 · Zbl 1113.90366
[15] Hammersley, J. M., Welsh, D. J. A.: First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In: Neyman, J. and Le Cam, L. M. (eds) Bernoulli 1713 Bayes 1763 Laplace 1813, Anniversary Volume, Proceedings of an International Research Seminar Statistical Laboratory, University of California, Berkeley 1963. Springer Berlin Heidelberg, pp. 61-110 (1965) doi:10.1007/978-3-642-49750-6_7 · Zbl 0143.40402
[16] Hassin, R.; Zemel, E., On shortest paths in graphs with random weights, Math. Oper. Res., 10, 4, 557-564 (1985) · Zbl 0578.05041 · doi:10.1287/moor.10.4.557
[17] Hoory, S.; Linial, N.; Wigderson, A., Expander graphs and their applications, Bull. Am. Math. Soc., 43, 4, 439-561 (2006) · Zbl 1147.68608 · doi:10.1090/S0273-0979-06-01126-8
[18] Howard, C. D.: Models of first-passage percolation. In: Kesten, H. (ed) Probability on Discrete Structures. Springer, Berlin Heidelberg, pp. 125-173 (2004). doi:10.1007/978-3-662-09444-0_3 · Zbl 1206.82048
[19] Janson, S., One, two and three times log n/n for paths in a complete graph with random weights, Combinat. Probab. Comput., 8, 4, 347-361 (1999) · Zbl 0934.05115 · doi:10.1017/S0963548399003892
[20] Janson, S., Tail bounds for sums of geometric and exponential variables, Stat. Probab. Lett., 135, 1-6 (2018) · Zbl 1392.60042 · doi:10.1016/j.spl.2017.11.017
[21] Karp, R. M., Steele, J. M.: Probabilistic analysis of heuristics. In: Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and Shmoys, D. B. (eds) The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. Wiley, pp. 181-205 (1985) · Zbl 0562.00014
[22] Klootwijk, S.; Manthey, B.; Visser, SK, Probabilistic analysis of optimization problems on generalized random shortest path metrics, Theoret. Comput. Sci., 866, 107-122 (2021) · Zbl 1477.68562 · doi:10.1016/j.tcs.2021.03.016
[23] Lawler, EL, Combinatorial Optimization: Networks and Matroids (1976), New York: Holt, Rinehart and Winston, New York · Zbl 0413.90040
[24] Reinelt, G.: The Traveling Salesman: Computational Solutions for TSP Applications. Lecture Notes in Computer Science 840. Berlin, Heidelberg: Springer-Verlag (1994) doi:10.1007/3-540-48661-5 · Zbl 0825.90720
[25] Reingold, EM; Tarjan, RE, On a greedy heuristic for complete matching, SIAM J. Comput., 10, 4, 676-681 (1981) · Zbl 0468.68072 · doi:10.1137/0210050
[26] Richardson, D., Random growth in a tessellation, Math. Proc. Camb. Philos. Soc., 74, 3, 515-528 (1973) · Zbl 0295.62094 · doi:10.1017/S0305004100077288
[27] Rosenkrantz, DJ; Stearns, RE; Lewis, PM, An Analysis of Several Heuristics for the Traveling Salesman Problem, SIAM J. Comput., 6, 3, 563-581 (1977) · Zbl 0364.90104 · doi:10.1137/0206041
[28] Ross, SM, Introduction to Probability Models (2010), Burlington, MA: Academic Press, Burlington, MA · Zbl 1184.60002
[29] Slootbeek, J. J. A.: Average-Case Analysis of the 2-opt Heuristic for the TSP. Master Thesis. University of Twente (2017)
[30] Walkup, DW, On the expected value of a random assignment problem, SIAM J. Comput., 8, 3, 440-442 (1979) · Zbl 0413.68062 · doi:10.1137/0208036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.