×

Tauberian theorems concerning weighted mean summable integrals. (English) Zbl 07773833

Let \(p:[ 0,\infty)\to( 0,\infty) \) be a continuous function such that the integral \(P( x) =\int_{0}^{x}p( t)\, dt\) is regularly varying of index \(\rho>0,\) that is, \(\lim_{x\to\infty}\frac{P( \mu x)}{P( x)}=\mu^{\rho}\) for all \(\mu>0.\) For a continuous function \(f:[0,\infty) \to\mathbb{R}\) (or \(\mathbb{C}\)), set \(s(x) =\int_{0}^{x}f( t)\, dt\) and \(\sigma_{p}( x)=\frac{1}{P( x)}\int_{0}^{x}s( t) p(t)\, dt.\) The integral \(\int_{0}^{\infty}f( x) dx\) is said to be \(( \overline{N},p) \) summable to a number \(L\) if \(\lim_{x\to\infty}\sigma_{p}( x) =L.\) The summability method \(( \overline{N},p) \) is regular, that is, existence of the integral \(\int_{0}^{\infty}f( x)\, dx\) implies its summability to the same number.
The authors prove some Tauberian theorems related to this method. For example, they show that \[\limsup_{x\to\infty}\int_{x}^{\mu x}\left(\frac{P( t)}{p( t)}\right) ^{r-1}\vert f( t) ^{r}\vert \,dt<\infty\quad ( r,\mu>1) \] is a Tauberian condition for \(( \overline{N},p) \). The authors’ results generalize some classical Tauberian theorems.

MSC:

40E05 Tauberian theorems
40A10 Convergence and divergence of integrals
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
26D15 Inequalities for sums, series and integrals
Full Text: DOI

References:

[1] Avakumović, VG, Über einen \({\cal{O} } \)-Inversionssatz, Bull. Int. Acad. Youg. Sci., 29-30, 107-117 (1936) · Zbl 0015.25003
[2] Bingham, NH; Goldie, CM; Teugels, JL, Regular Variation (1987), Camdridge: Cambridge University Press, Camdridge · Zbl 0617.26001 · doi:10.1017/CBO9780511721434
[3] Bray, WO; Stanojević, ČV, Tauberian \(L^1\)-convergence classes of Fourier series II, Math. Ann., 269, 469-486 (1984) · Zbl 0535.42007 · doi:10.1007/BF01450761
[4] Cerone, P.; Dragomir, SS, Mathematical Inequalities: A Perspective (2010), New York: Chapman and Hall/CRC, New York · doi:10.1201/b10483
[5] Chen, C.; Hsu, J., Tauberian theorems for weighted means of double sequences, Anal. Math., 26, 243-262 (2000) · Zbl 1062.40009 · doi:10.1023/A:1005689724309
[6] Dragomir, SS, Inequalities for the Riemann-Stieltjes integral of \((p, q)-H\)-dominated integrators with applications, Appl. Math. E-Notes, 15, 243-260 (2015) · Zbl 1334.26044
[7] Fekete, Á.; Móricz, F., Necessary and sufficient Tauberian conditions in the case of weighted mean summable integrals over \(\mathbb{R}_+ \). II., Publ. Math., 67, 65-78 (2005) · Zbl 1089.40003
[8] Hardy, GH, Divergent Series (1949), Oxford: Clarendon Press, Oxford · Zbl 0032.05801
[9] G.H. Hardy, J.E. Littlewood, Tauberian theorems concerning power series and Dirichlet’s series whose coefficients are positive. Proc. London Math. Soc. 2(13), 174-191 (1914) · JFM 45.0389.02
[10] Hardy, GH, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc., 8, 301-320 (1910) · JFM 41.0278.02 · doi:10.1112/plms/s2-8.1.301
[11] Karamata, J., Sur un mode de croissance régulière des functions, Mathematica (Cluj), 4, 38-53 (1930) · JFM 56.0907.01
[12] Karamata, J., Teorija i praksa Stieltjes-ova integrala (1949), Beograd: Srpska Akademija Nauka, Beograd
[13] Móricz, F., Necessary and sufficient Tauberian conditions in the case of weighted mean summable integrals over \(\mathbb{R}_+ \), Math. Inequal. Appl., 7, 87-93 (2004) · Zbl 1046.40005
[14] Móricz, F.; Stadtmüller, U., Characterization of the convergence of weighted averages of sequences and functions, Period Math. Hung., 65, 135-145 (2012) · Zbl 1299.40005 · doi:10.1007/s10998-012-9329-4
[15] Móricz, F.; Németh, Z., Tauberian conditions under which convergence of integrals follows from summability \((C,1)\) over \(\mathbb{R}_+ \), Anal. Math., 26, 53-61 (2000) · Zbl 0964.40002 · doi:10.1023/A:1010332530381
[16] Özsaraç, F.; Çanak, İ., Tauberian theorems for iterations of weighted mean summable integrals, Positivity, 23, 219-231 (2019) · Zbl 1421.40005 · doi:10.1007/s11117-018-0603-4
[17] Stanojević, ČV, Structure of Fourier and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Am. Math. Soc. New Ser., 19, 283-286 (1988) · Zbl 0663.42008 · doi:10.1090/S0273-0979-1988-15643-1
[18] E. Seneta, Regularly Varying Functions Lecture Notes in Mathematics. (Springer-Verlag, Berlin-Heidelberg, 1976) · Zbl 0324.26002
[19] Stanojević, VB, Convergence of Fourier series with complex quasimonotone coefficients and coefficients of bounded variation of order \(m\), J. Math. Anal. Appl., 115, 482-505 (1986) · Zbl 0588.42009 · doi:10.1016/0022-247X(86)90010-7
[20] Totur, Ü.; Okur, MA, Alternative proofs of some classical Tauberian theorems for the weighted mean method of integrals, Filomat, 29, 2281-2287 (2015) · Zbl 1454.40010 · doi:10.2298/FIL1510281T
[21] Totur, Ü.; Okur, MA; Çanak, İ., One-sided Tauberian conditions for the \(({\overline{N}}, p)\) summability of integrals, U.P.B Sci. Bull. Ser. A, 80, 65-74 (2018) · Zbl 1424.40038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.