×

Summation formulas of hyperharmonic numbers with their generalizations. (English) Zbl 07773239

Summary: J. Spieß [Math. Comput. 55, No. 192, 839–863 (1990; Zbl 0724.05005)] gave some identities of harmonic numbers including the types \(\sum_{\ell =1}^n\ell^k H_\ell\), \(\sum_{\ell =1}^n\ell^k H_{n-\ell}\) and \(\sum_{\ell =1}^n\ell^k H_\ell H_{n-\ell}\). In this paper, we derive several formulas of hyperharmonic numbers including \(\sum_{\ell =0}^n \ell^p h_\ell^{(r)} h_{n-\ell}^{(s)}\) and \(\sum_{\ell =0}^n \ell^p\left(h_\ell^{(r)}\right)^2\). Some more formulas of generalized hyperharmonic numbers are also shown.

MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
11B73 Bell and Stirling numbers
05A19 Combinatorial identities, bijective combinatorics

Citations:

Zbl 0724.05005

References:

[1] Abramowitz, M.; Stegun, IA, Handbook of Mathematical Functions (1965), New York: Dover, New York · Zbl 0171.38503
[2] Bahşi, M.; Solak, S., An application of hyperharmonic numbers in matrices, Hacet. J. Math. Stat., 42, 387-393 (2013) · Zbl 1338.11043
[3] Benjamin, AT; Gaebler, D.; Gaebler, R., A combinatorial approach to hyperharmonic numbers, Integers, 3, A15 (2003) · Zbl 1128.11309
[4] Berndt, BC, Ramanujan’s Notebooks, Part I (1985), New York: Springer, New York · Zbl 0555.10001 · doi:10.1007/978-1-4612-1088-7
[5] Borwein, D.; Borwein, JM; Girgensohn, R., Explicit evaluation of Euler sums, Proc. Edinb. Math. Soc. (2), 38, 2, 277-294 (1995) · Zbl 0819.40003 · doi:10.1017/S0013091500019088
[6] Carlitz, L., \(q\)-Bernoulli numbers and polynomials, Duke Math. J., 15, 987-1000 (1948) · Zbl 0032.00304 · doi:10.1215/S0012-7094-48-01588-9
[7] Cereceda, JL, An introduction to hyperharmonic numbers, Int. J. Math. Educ. Sci. Technol., 46, 461-469 (2015) · Zbl 1318.97004 · doi:10.1080/0020739X.2014.982734
[8] Chen, WYC; Fu, AM; Zhang, IF, Faulhaber’s theorem on power sums, Discrete Math., 309, 2974-2981 (2009) · Zbl 1220.11027 · doi:10.1016/j.disc.2008.07.027
[9] Conway, JH; Guy, RK, The Book of Numbers (1996), New York: Springer, New York · Zbl 0866.00001 · doi:10.1007/978-1-4612-4072-3
[10] Dil, A.; Mező, I.; Cenkci, M., Evaluation of Euler-like sums via Hurwitz zeta values, Turk. J. Math., 41, 6, 1640-1655 (2017) · Zbl 1424.11130 · doi:10.3906/mat-1603-4
[11] Kamano, K., Dirichlet series associated with hyperharmonic numbers, Mem. Osaka Inst. Tech. Ser. A, 56, 2, 11-15 (2011)
[12] Komatsu, T.; Li, R., Summation formulas of q-hyperharmonic numbers, Afr. Mat., 32, 1179-1192 (2021) · Zbl 1488.05033 · doi:10.1007/s13370-021-00891-9
[13] Li, R., Euler sums of generalized hyperharmonic numbers, Funct. Approx. Comment. Math., 66, 2, 179-189 (2022) · Zbl 1536.11045 · doi:10.7169/facm/1953
[14] Mansour, T.; Shattuck, M., A \(q\)-analog of the hyperharmonic numbers, Afr. Mat., 160, 147-160 (2014) · Zbl 1306.11020 · doi:10.1007/s13370-012-0106-6
[15] Mező, I.; Dil, A., Hyperharmonic series involving Hurwitz zeta function, J. Number Theory, 130, 360-369 (2010) · Zbl 1225.11032 · doi:10.1016/j.jnt.2009.08.005
[16] Ömür, N.; Koparal, S., On the matrices with the generalized hyperharmonic numbers of order \(r\), Asian-Eur. J. Math., 11, 3, 1850045, 9 (2018) · Zbl 1391.11056 · doi:10.1142/S1793557118500456
[17] Riordan, J., Combinatorial Identities (1979), Huntington: R. E. Krieger, Huntington · Zbl 0194.00502
[18] Spieß, J., Some identities involving harmonic numbers, Math. Comput., 55, 839-863 (1990) · Zbl 0724.05005 · doi:10.1090/S0025-5718-1990-1023769-6
[19] Zave, DA, A series expansion involving the harmonic numbers, Inf. Process. Lett., 5, 75-77 (1976) · Zbl 0359.65012 · doi:10.1016/0020-0190(76)90068-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.