×

Localized model order reduction and domain decomposition methods for coupled heterogeneous systems. (English) Zbl 07772297

Summary: We propose a model order reduction technique to accurately approximate the behavior of multi-component systems without any a-priori knowledge of the coupled model. In the offline phase, we construct independent surrogate models by solving the local problems with parametrized interface boundary conditions, while we combine them using domain decomposition techniques during the online phase. We show the potential of the proposed approach in terms of accuracy, computational performance and robustness in a series of test cases, including nonlinear and multi-physics problems.
© 2023 The Authors. International Journal for Numerical Methods in Engineering published by John Wiley & Sons Ltd.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
35Kxx Parabolic equations and parabolic systems

References:

[1] HollandOT. Taxonomy for the Modeling and simulation of emergent behavior systems. Paper presented at: SpringSim’07. Society for Computer Simulation International. 200728-35.
[2] DiscacciatiN, HesthavenJS. Modeling synchronization in globally coupled oscillatory systems using model order reduction. Chaos: Interdiscip J Nonlinear Sci. 2021;31(5):053127. doi:10.1063/5.0031142 · Zbl 1462.34079
[3] QuarteroniA, ValliA. Domain Decomposition Methods for Partial Differential Equations. Clarendon Press; 1999. · Zbl 0931.65118
[4] QuarteroniA, ManzoniA, NegriF. Reduced Basis Methods for Partial Differential Equations: an Introduction. UNITEXT. Springer International Publishing; 2015.
[5] HesthavenJ, RozzaG, StammB. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics. Springer International Publishing; 2015.
[6] CarlbergK, GuzzettiS, KhalilM, SargsyanK. The Network Uncertainty Quantification Method for Propagating Uncertainties in Component‐Based Systems; 2019. doi:10.48550/arXiv.1908.11476
[7] BuhrA, IapichinoL, OhlbergerM, RaveS, SchindlerF, SmetanaK. Localized Model Reduction for Parameterized Problems; 2019. https://www.degruyter.com/document/doi/10.1515/9783110671490‐006/html
[8] IapichinoL, QuarteroniA, RozzaG. Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Comput Math Appl. 2016;71(1):408‐430. doi:10.1016/j.camwa.2015.12.001 · Zbl 1443.65340
[9] HoangC, ChoiY, CarlbergK. Domain‐decomposition least‐squares Petrov-Galerkin (DD‐LSPG) nonlinear model reduction. Comput Methods Appl Mech Eng. 2021;384:113997. doi:10.1016/j.cma.2021.113997 · Zbl 1507.65242
[10] FarhatC, RouxFX. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng. 1991;32(6):1205‐1227. doi:10.1002/nme.1620320604 · Zbl 0758.65075
[11] MadayY, RønquistEM. A reduced‐basis element method. J Sci Comput. 2002;17(1‐4):447‐459. doi:10.1023/a:1015197908587 · Zbl 1014.65119
[12] MadayY, RonquistEM. The reduced basis element method: application to a thermal fin problem. SIAM J Sci Comput. 2004;26(1):240‐258. doi:10.1137/S1064827502419932 · Zbl 1077.65120
[13] CastrodA, KuberryP, TezaurI, BochevP. A Novel Partitioned Approach for Reduced Order Model-Finite Element Model (ROM‐FEM) and ROM‐ROM Coupling; 2022. https://ascelibrary.org/doi/abs/10.1061/9780784484470.044
[14] PegolottiL, PfallerMR, MarsdenAL, DeparisS. Model order reduction of flow based on a modular geometrical approximation of blood vessels. Comput Methods Appl Mech Eng. 2021;380:113762. doi:10.1016/j.cma.2021.113762 · Zbl 1506.76228
[15] EftangJL, PateraAT. A port‐reduced static condensation reduced basis element method for large component‐synthesized structures: approximation and a posteriori error estimation. Adv Model Simul Eng Sci. 2014;1(1):3. doi:10.1186/2213‐7467‐1‐3
[16] HuynhD, KnezevicD, PateraA. A static condensation reduced basis element method: complex problems. Comput Methods Appl Mech Eng. 2013;259:197‐216. doi:10.1016/j.cma.2013.02.013 · Zbl 1286.65160
[17] HuynhP, BaoD, KnezevicDJ, PateraAT. A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM: M2AN. 2013;47(1):213‐251. doi:10.1051/m2an/2012022 · Zbl 1276.65082
[18] WuL, TisoP, KeulenVF. Interface reduction with multilevel Craig-Bampton substructuring for component mode synthesis. AIAA J. 2018;56(5):2030‐2044. doi:10.2514/1.J056196
[19] RoyCJ. Coupling of Substructures for Dynamic Analyses-An Overview; 2000. https://arc.aiaa.org/doi/10.2514/6.2000‐1573
[20] KrattigerD, WuL, ZacharczukM, et al. Interface reduction for Hurty/Craig‐Bampton substructured models: review and improvements. Mech Syst Signal Process. 2019;114:579‐603. doi:10.1016/j.ymssp.2018.05.031
[21] SmetanaK, TaddeiT. Localized Model Reduction for Nonlinear Elliptic Partial Differential Equations: Localized Training, Partition of Unity, and Adaptive Enrichment; 2022. https://arxiv.org/abs/2202.09872
[22] DiercksP, VeroyK, Robens‐RadermacherA, UngerJF. Multiscale Modeling of Linear Elastic Heterogeneous Structures Based on a Localized Model Order Reduction Approach; 2022. https://arxiv.org/abs/2201.10374
[23] XuJ, HuangC, DuraisamyK. Reduced‐order Modeling framework for combustor instabilities using truncated domain training. AIAA J. 2020;58(2):618‐632. doi:10.2514/1.J057959
[24] GanderMJ, DuboisO. Optimized Schwarz methods for a diffusion problem with discontinuous coefficient. Numer Algorithms. 2015;69(1):109‐144. doi:10.1007/s11075‐014‐9884‐2 · Zbl 1314.65155
[25] GanderMJ, HalpernL, NatafF. Optimal convergence for overlapping and non‐overlapping Schwarz waveform relaxation. Paper presented at: 11th International Conference on Domain Decomposition Methods. 199927‐36.
[26] GanderMJ, LiuY. On the definition of Dirichlet and Neumann conditions for the Biharmonic equation and its impact on associated Schwarz methods. In: LeeCO (ed.), CaiXC (ed.), KeyesDE (ed.), et al., eds. Domain Decomposition Methods in Science and Engineering XXIII. Springer International Publishing; 2017:303‐311. · Zbl 1367.65182
[27] LionsPL. On the Schwarz alternating method. III: a variant for nonoverlapping subdomains. Paper presented at: Third International Symposium on Domain Decomposition Methods for Partial Differential Equations. Philadelphia: SIAM. 1990202‐223. · Zbl 0704.65090
[28] DuboisO. Optimized Schwarz methods with Robin conditions for the advection‐diffusion equation. In: WidlundOB (ed.), KeyesDE (ed.), eds. Domain Decomposition Methods in Science and Engineering XVI. Springer Berlin Heidelberg; 2007:181‐188.
[29] BadiaS, NobileF, VergaraC. Fluid-structure partitioned procedures based on Robin transmission conditions. J Comput Phys. 2008;227(14):7027‐7051. doi:10.1016/j.jcp.2008.04.006 · Zbl 1140.74010
[30] GanderMJ, HalpernL. Méthodes de relaxation d’ondes (SWR) pour l’équation de la chaleur en dimension 1. Comptes Rendus Math. 2003;336(6):519‐524. doi:10.1016/S1631‐073X(03)00009‐8 · Zbl 1028.65100
[31] CarlbergK, BaroneM, AntilH. Galerkin v. least‐squares Petrov-Galerkin projection in nonlinear model reduction. J Comput Phys. 2017;330:693‐734. doi:10.1016/j.jcp.2016.10.033 · Zbl 1378.65145
[32] BarraultM, MadayY, NguyenNC, PateraAT. An “empirical interpolation” method: application to efficient reduced‐basis discretization of partial differential equations. Comptes Rendus Math. 2004;339(9):667‐672. doi:10.1016/j.crma.2004.08.006 · Zbl 1061.65118
[33] AstridP, WeilandS, WillcoxK, BackxT. Missing point estimation in models described by proper orthogonal decomposition. IEEE Trans Automat Contr. 2008;53(10):2237‐2251. · Zbl 1367.93110
[34] ŞtefănescuR, SanduA, NavonIM. Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations. Int J Numer Methods Fluids. 2014;76(8):497‐521. doi:10.1002/fld.3946
[35] ChaturantabutS, SorensenDC. Nonlinear model reduction via discrete empirical interpolation. SIAM J Sci Comput. 2010;32(5):2737‐2764. doi:10.1137/090766498 · Zbl 1217.65169
[36] PeherstorferB, WillcoxK. Online adaptive model reduction for nonlinear systems via low‐rank updates. SIAM J Sci Comput. 2015;37(4):A2123‐A2150. doi:10.1137/140989169 · Zbl 1323.65102
[37] AlettiM, LombardiD. A reduced order representation of the Poincaré‐Steklov operator: an application to coupled multi‐physics problems. Int J Numer Methods Eng. 2017. https://onlinelibrary.wiley.com/doi/full/10.1002/nme.5490 · Zbl 07867113
[38] AlettiMC, PerottoS, VenezianiA. HiMod reduction of advection-diffusion-reaction problems with general boundary conditions. J Sci Comput. 2018;76(1):89‐119. doi:10.1007/s10915‐017‐0614‐5 · Zbl 1397.65248
[39] CanutoC, HussainiM, QuarteroniA, ZangT. Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Springer; 2007.
[40] BuffaA, MadayY, PateraAT, Prud’hommeC, TuriniciG. A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: Math Model Numer Anal-Modél Math Anal Num��r. 2012;46(3):595‐603. doi:10.1051/m2an/2011056 · Zbl 1272.65084
[41] OhlbergerM, RaveS. Reduced basis methods: success, limitations and future challenges. Numer Anal. 2015. https://arxiv.org/abs/1511.02021
[42] GambinoG, LombardoMC, RubinoG, SammartinoM. Pattern selection in the 2D FitzHugh-Nagumo model. Ric di Mat. 2019;68(2):535‐549. doi:10.1007/s11587‐018‐0424‐6 · Zbl 1431.37059
[43] DiscacciatiM. Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. PhD thesis. École Polytechnique Fédérale de Lausanne; 2004.
[44] BallarinF, ManzoniA, QuarteroniA, RozzaG. Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-stokes equations. Int J Numer Methods Eng. 2015;102(5):1136‐1161. doi:10.1002/nme.4772 · Zbl 1352.76039
[45] StabileG, RozzaG. Finite volume POD‐Galerkin stabilized reduced order methods for the parametrized incompressible Navier-Stokes equations. Comput Fluids. 2018;173:273‐284. doi:10.1016/j.compfluid.2018.01.035 · Zbl 1410.76264
[46] DeCariaV, IliescuT, LaytonW, McLaughlinM, SchneierM. An artificial compression reduced order model. SIAM J Numer Anal. 2020;58(1):565‐589. doi:10.1137/19M1246444 · Zbl 1434.76064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.