×

On adaptive mesh for the initial boundary value singularly perturbed delay Sobolev problems. (English) Zbl 07771388

Summary: A uniform finite difference method on a B-mesh is applied to solve the initial-boundary value problem for singularly perturbed delay Sobolev equations. To solve the foresold problem, finite difference scheme on a special nonuniform mesh, whose solution converges point-wise independently of the singular perturbation parameter is constructed and analyzed. The present paper also aims at discussing the stability and convergence analysis of the method. An error analysis shows that the method is of second order convergent in the discrete maximum norm independent of the perturbation parameter. A numerical example and the simulation results show the effectiveness of our theoretical results.
{© 2019 Wiley Periodicals, Inc.}

MSC:

65-XX Numerical analysis
35-XX Partial differential equations
Full Text: DOI

References:

[1] A.Quarteroni, Fourier spectral methods for pseudo‐parabolic equations, SIAM J. Numer. Anal. vol. 24 (1987) pp. 323-335. · Zbl 0621.65120
[2] M. O.Korpusov, A. G.Sveshnikov, Blow‐up of solutions of strongly nonlinear equations of pseudoparabolic type, J. Math. Sci. vol. 148 (2008) pp. 1-142. · Zbl 1221.35005
[3] S. A.Dubey, Numerical solution for nonlocal Sobolev‐type differential equations, Electron. J. Differ. Equ. Conf. vol. 19 (2010) pp. 75-83. · Zbl 1200.35012
[4] E. I.Kaikina, P. I.Naumkin, I. A.Shishmarev, The Cauchy problem for an equation of Sobolev type with power non‐linearity, Izv. Math. vol. 69 (2005) pp. 59-111. · Zbl 1079.35024
[5] G.Karch, Asymptotic behaviour of solutions to some pseudoparabolic equations, Math. Methods Appl. Sci. vol. 20 (1997) pp. 271-289. · Zbl 0869.35057
[6] R. K.Bullough, P. J.Caudrey, Solitons, vol. 1‐13, Springer‐Verlag, New York, 1980. · Zbl 0428.00010
[7] H.Ikezi, “Experiments on solitons in plasmas,” in Soliton in action, K.Lonngren (ed.), A.Scott (ed.) (Editors), Academic Press, Cambridge, 1978, pp. 152-170.
[8] K. E.Lonngren, “Observation of solitons on nonlinear dispersive transmission lines,” in Soliton in action, Academic Press, Cambridge, 1978, pp. 127-148.
[9] S. L.Sobolev, On a new problem of mathematical physics, Izv. Akad. Nauk SSSR Ser. Mat. vol. 18 (1954) pp. 3-50 (in Russian). · Zbl 0055.08401
[10] S. A.Gabov, New problems of the mathematical theory of waves, Fizmatlit, Moscow, 1998, (in Russian). · Zbl 0911.76001
[11] M. O.Korpusov, A. G.Sveshnikov, Three‐dimensional nonlinear evolutionary pseudoparabolic equations in mathematical physics, Zh. Vychisl. Mat. Mat. Fiz. vol. 43 (2003) pp. 1835-1869; English transl., Comput. Math. Math. Phys. 43 (2003), 1765-1797. · Zbl 1121.35329
[12] P. I.Naumkin, I. A.Shishmarev, “Nonlinear nonlocal equations in the theory of waves,” in Translations of mathematical monographs, vol. 133, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0802.35002
[13] S. Y.Dobrokhotov, Nonlocal analogs of the nonlinear Boussinesq equation for surface waves over a rough bottom, and their asymptotic solutions, Dokl. Akad. Nauk SSSR vol. 292 (1987) pp. 63-67; English transl., Soviet Phys. Dokl. 32 (1987), 18-20. · Zbl 0626.76023
[14] M. O.Korpusov, Y. D.Pletner, A. G.Sveshnikov, Unsteady waves in anisotropic dispersive media, Zh. Vychisl. Mat. Mat. Fiz. vol. 39 (1999) pp. 1006-1022; English transl., Comput. Math. Math. Phys. 39 (1999), 968-984. · Zbl 0963.78012
[15] G. M.Amiraliyev, Investigation of the difference schemes for the quasi‐linear Sobolev equations, Differential Equations vol. 23 (1987) pp. 1453-1455 (in Russian). · Zbl 0634.65080
[16] A.Favini, A.Yagi, Degenerate differential equations in Banach spaces, Marcel Dekker, New York, 1999. · Zbl 0913.34001
[17] G. V.Demidenko, S. V.Uspenskii, Equations and systems unsolved with respect to the highest derivative, Nauchnaya Kniga, Novosibirsk, 1998, (in Russian). · Zbl 1053.35003
[18] R. E.Ewing, Time stepping Galerkin methods for nonlinear Sobolev partial differential equations, SIAM J. Numer. Anal. vol. 15 (1978) pp. 1125-1150. · Zbl 0399.65083
[19] W. E.Ford, T. W.Ting, Uniform error estimates for difference approximations to nonlinear pseudo‐parabolic partial differential equations, SIAM J. Numer. Anal. vol. 11 (1974) pp. 155-169. · Zbl 0244.65064
[20] V. I.Lebedev, The method of difference for the equations of Sobolev type, Dokl. Acad. Sci. USSR vol. 114 (1957) pp. 1166-1169. · Zbl 0081.12603
[21] I. E.Egorov, S. G.Pyatkov, S. V.Popov, Non‐classical differential‐operator equations, Nauka, Novosibirsk, 2000, (in Russian). · Zbl 1212.35001
[22] H.Duru, Difference schemes for the singularly perturbed Sobolev periodic boundary problem, Appl. Math. Comput. vol. 149 (2004) pp. 187-201. · Zbl 1047.65066
[23] E. P.Doolan, J. J.Miller, W. H. A.Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980. · Zbl 0459.65058
[24] M. K.Kadalbajoo, Y. N.Reddy, Asymptotic and numerical analysis of singular perturbation problems: A survey, Appl. Math. Comput. vol. 30 (1989) pp. 223-259. · Zbl 0678.65059
[25] G. M.Amiraliyev, Y.Mamedov, Difference schemes on the uniform mesh for singular perturbed pseudo‐parabolic equation, Turkish J. Math. vol. 19 (1995) pp. 207-222. · Zbl 0859.65088
[26] G. M.Amiraliyev, Difference method for the solution of one problem of the theory of dispersive waves, Differential Equations vol. 26 (1990) pp. 2146-2154 (in Russian).
[27] J. L.Langnese, General boundary‐value problems for differential equations of Sobolev type, SIAM J. Math. Anal. vol. 3 (1972) pp. 105-119. · Zbl 0232.35026
[28] C. L.Sobolev, About new problems in mathematical physics, Izv. Acad. Sci. USSR, Mathematics vol. 18 (1954) pp. 3-50. · Zbl 0055.08401
[29] J.Wu, Theory and applications of partial functional differential equations, Springer‐Verlag, New York, 1996. · Zbl 0870.35116
[30] A. R.Ansari, S. A.Bakr, G. I.Shishkin, A parameter‐robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math. vol. 205 (2007) pp. 552-566. · Zbl 1121.65090
[31] F.Ghomanjani, A.Kiliçman, F. A.Ghassabzade, Numerical solution of singularly perturbed delay differential equations with layer behavior, Abstract and Applied Analysis vol. 2014 (2014) p. 731057. · Zbl 1474.65192
[32] F.Erdogan, An exponentially fitted method for singularly perturbed delay differential equations, Adv. Differential Equations vol. 2009 (2009) p. 781579. · Zbl 1167.65390
[33] G. M.Amiraliyev, E.Cimen, Numerical method for a singularly perturbed convection-diffusion problem with delay, Appl. Math. Comput. vol. 216 (2010) pp. 2351-2359. · Zbl 1195.65089
[34] M. K.Kadalbajoo, A.Awasthi, A parameter uniform difference scheme for singularly perturbed parabolic problem in one space dimension, Appl. Math. Comput. vol. 183 (2006) pp. 42-60. · Zbl 1110.65079
[35] M. K.Kadalbajoo, K. K.Sharma, A.Awasthi, A parameter‐uniform implicit difference scheme for solving time‐dependent Burgers’ equations, Appl. Math. Comput. vol. 120 (2005) pp. 1365-1393. · Zbl 1084.65081
[36] M. K.Kadalbajoo, V.Gupta, A brief survey on numerical methods for solving singularly perturbed problems, Appl. Math. Comput. vol. 217 (2010) pp. 3641-3716. · Zbl 1208.65105
[37] V.Gupta, M. K.Kadalbajoo, R. K.Dubey, A parameter‐uniform higher order finite difference scheme for singularly perturbed time‐dependent parabolic problem with two small parameters, Int. J. Comput. Math. vol. 96 (2019) pp. 474-499. · Zbl 1499.65390
[38] V. S.Aswin, A.Awasthi, M. M.Rashidi, A differential quadrature based numerical method for highly accurate solutions of Burgers’ equation, Numer. Methods Partial Differential Equations vol. 33 (2017) pp. 2023-2042. · Zbl 1383.65114
[39] I.Boglaev, S.Pack, A uniformly convergent method for a singularly perturbed semilinear reaction-diffusion problem with discontinuous data, Appl. Math. Comput. vol. 182 (2006) pp. 244-257. · Zbl 1109.65066
[40] N. S.Bakhvalov, Towards optimization of methods for solving boundary value problems in the presence of boundary layers, Zh. Vychisl. Mat. Mat. Fiz. vol. 9 (1969) pp. 841-859 (In Russian). · Zbl 0208.19103
[41] A. A.Samarskii, Theory of difference schemes. 2nd ed., Nauka, Moscow, 1983. · Zbl 0971.65076
[42] I. P.Boglaev, Approximate solution of a nonlinear boundary value problem with a small parameter for the highest‐order differential, USSR Comput. Math. Math. Phys. vol. 24 (1984) pp. 30-35. · Zbl 0595.65093
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.