×

A neural network-enhanced reproducing kernel particle method for modeling strain localization. (English) Zbl 07768033

Summary: Modeling the localized intensive deformation in a damaged solid requires highly refined discretization for accurate prediction, which significantly increases the computational cost. Although adaptive model refinement can be employed for enhanced effectiveness, it is cumbersome for the traditional mesh-based methods to perform while modeling the evolving localizations. In this work, neural network-enhanced reproducing kernel particle method (NN-RKPM) is proposed, where the location, orientation, and shape of the solution transition near a localization is automatically captured by the NN approximation via a block-level neural network (NN) optimization. The weights and biases in the blocked parameterization network control the location and orientation of the localization. The designed basic four-kernel NN block is capable of capturing a triple junction or a quadruple junction topological pattern, while more complicated localization topological patters are captured by the superposition of multiple four-kernel NN blocks. The standard RK approximation is then utilized to approximate the smooth part of the solution, which permits a much coarser discretization than the high-resolution discretization needed to capture sharp solution transitions with the conventional methods. A regularization of the NN approximation is additionally introduced for discretization-independent material responses. The effectiveness of the proposed NN-RKPM is verified by a series of numerical verifications.
{© 2022 John Wiley & Sons Ltd.}

MSC:

74Sxx Numerical and other methods in solid mechanics
74Axx Generalities, axiomatics, foundations of continuum mechanics of solids
76Mxx Basic methods in fluid mechanics

References:

[1] OrganD, FlemingM, TerryT, BelytschkoT. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput Mech. 1996;18(3):225‐235. doi:10.1007/BF00369940 · Zbl 0864.73076
[2] SukumarN, MoranB, BlackT, BelytschkoT. An element‐free Galerkin method for three‐dimensional fracture mechanics. Comput Mech. 1997;20(1):170‐175. doi:10.1007/s004660050235 · Zbl 0888.73066
[3] BelytschkoT, BlackT. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng. 1999;45(5):601‐620. doi:10.1002/(SICI)1097‐0207(19990620)45:5<601::AID‐NME598>3.0.CO;2‐S · Zbl 0943.74061
[4] DolbowJ, MoësN, BelytschkoT. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem Anal Des. 2000;36(3):235‐260. doi:10.1016/S0168‐874X(00)00035‐4 · Zbl 0981.74057
[5] DauxC, MoësN, DolbowJ, SukumarN, BelytschkoT. Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng. 2000;48(12):1741‐1760. doi:10.1002/1097‐0207(20000830)48:12<1741::AID‐NME956>3.0.CO;2‐L · Zbl 0989.74066
[6] SukumarN, MoësN, MoranB, BelytschkoT. Extended finite element method for three‐dimensional crack modelling. Int J Numer Methods Eng. 2000;48(11):1549‐1570. doi:10.1002/1097‐0207(20000820)48:11<1549::AID‐NME955>3.0.CO;2‐A · Zbl 0963.74067
[7] DuarteCA, HamzehON, LiszkaTJ, TworzydloWW. A generalized finite element method for the simulation of three‐dimensional dynamic crack propagation. Comput Methods Appl Mech Eng. 2001;190(15):2227‐2262. doi:10.1016/S0045‐7825(00)00233‐4 · Zbl 1047.74056
[8] deBorstR. Some recent issues in computational failure mechanics. Int J Numer Methods Eng. 2001;52(1-2):63‐95. doi:10.1002/nme.272
[9] BažantZP, JirásekM. Nonlocal integral formulations of plasticity and damage: survey of progress. J Eng Mech. 2002;128(11):1119‐1149. doi:10.1061/(ASCE)0733‐9399(2002)128:11(1119)
[10] MindlinRD. Second gradient of strain and surface‐tension in linear elasticity. Int J Solids Struct. 1965;1(4):417‐438. doi:10.1016/0020‐7683(65)90006‐5
[11] AifantisEC. On the microstructural origin of certain inelastic models. J Eng Mater Technol. 1984;106(4):326‐330. doi:10.1115/1.3225725
[12] De BorstR, MühlhausH‐B. Gradient‐dependent plasticity: formulation and algorithmic aspects. Int J Numer Methods Eng. 1992;35(3):521‐539. doi:10.1002/nme.1620350307 · Zbl 0768.73019
[13] MieheC, HofackerM, WelschingerF. A phase field model for rate‐independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng. 2010;199(45):2765‐2778. doi:10.1016/j.cma.2010.04.011 · Zbl 1231.74022
[14] MieheC, WelschingerF, HofackerM. Thermodynamically consistent phase‐field models of fracture: variational principles and multi‐field FE implementations. Int J Numer Methods Eng. 2010;83(10):1273‐1311. doi:10.1002/nme.2861 · Zbl 1202.74014
[15] BordenMJ, VerhooselCV, ScottMA, HughesTJR, LandisCM. A phase‐field description of dynamic brittle fracture. Comput Methods Appl Mech Eng. 2012;217-220:77‐95. doi:10.1016/j.cma.2012.01.008 · Zbl 1253.74089
[16] GeelenRJM, LiuY, HuT, TupekMR, DolbowJE. A phase‐field formulation for dynamic cohesive fracture. Comput Methods Appl Mech Eng. 2019;348:680‐711. doi:10.1016/j.cma.2019.01.026 · Zbl 1440.74359
[17] HeX, HeQ, ChenJ‐S. Deep autoencoders for physics‐constrained data‐driven nonlinear materials modeling. Comput Methods Appl Mech Eng. 2021;385:114034. doi:10.1016/j.cma.2021.114034 · Zbl 1502.74109
[18] HeQ, ChenJ‐S. A physics‐constrained data‐driven approach based on locally convex reconstruction for noisy database. Comput Methods Appl Mech Eng. 2020;363:112791. doi:10.1016/j.cma.2019.112791 · Zbl 1436.62725
[19] HeQ, LaurenceDW, LeeC‐H, ChenJ‐S. Manifold learning based data‐driven modeling for soft biological tissues. J Biomech. 2021;117:110124. doi:10.1016/j.jbiomech.2020.110124
[20] LeeK, CarlbergKT. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders. J Comput Phys. 2020;404:108973. doi:10.1016/j.jcp.2019.108973 · Zbl 1454.65184
[21] RaissiM, PerdikarisP, KarniadakisGE. Physics‐informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686‐707. doi:10.1016/j.jcp.2018.10.045 · Zbl 1415.68175
[22] HaghighatE, JuanesR. SciANN: a Keras/TensorFlow wrapper for scientific computations and physics‐informed deep learning using artificial neural networks. Comput Methods Appl Mech Eng. 2021;373:113552. doi:10.1016/j.cma.2020.113552 · Zbl 1506.65251
[23] SamaniegoE, AnitescuC, GoswamiS, et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput Methods Appl Mech Eng. 2020;362:112790. doi:10.1016/j.cma.2019.112790 · Zbl 1439.74466
[24] ZhangL, ChengL, LiH, et al. Hierarchical deep‐learning neural networks: finite elements and beyond. Comput Mech. 2021;67(1):207‐230. doi:10.1007/s00466‐020‐01928‐9 · Zbl 07360501
[25] LiuWK, JunS, ZhangYF. Reproducing kernel particle methods. Int J Numer Methods Fluids. 1995;20(8-9):1081‐1106. doi:10.1002/fld.1650200824 · Zbl 0881.76072
[26] ChenJS, PanC, WuC‐T, LiuWK. Reproducing kernel particle methods for large deformation analysis of non‐linear structures. Comput Methods Appl Mech Eng. 1996;139(96):195‐227. doi:10.1016/S0045‐7825(96)01083‐3 · Zbl 0918.73330
[27] HughesTJR, CottrellJA, BazilevsY. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194(39):4135‐4195. doi:10.1016/j.cma.2004.10.008 · Zbl 1151.74419
[28] WeiH, ChenJS. A damage particle method for smeared modeling of brittle fracture. Int J Multiscale Comput Eng. 2018;16(4):303‐324. doi:10.1615/IntJMultCompEng.2018026133
[29] YouY, ChenJ‐S, LuH. Filters, reproducing kernel, and adaptive meshfree method. Comput Mech. 2003;31(3):316‐326. doi:10.1007/s00466‐003‐0434‐3 · Zbl 1038.74681
[30] KingmaDP, BaJ. Adam: a method for stochastic optimization. Proceedings of the BT—3rd International Conference on Learning Representations, ICLR 2015; May 7‐9, 2015; San Diego, CA. Conference Track Proceedings Published Online 2015. http://arxiv.org/abs/1412.6980
[31] ChenJ‐S, WuC‐T, BelytschkoT. Regularization of material instabilities by meshfree approximations with intrinsic length scales. Int J Numer Methods Eng. 2000;47(7):1303‐1322. doi:10.1002/(SICI)1097‐0207(20000310)47:7<1303::AID‐NME826>3.0.CO;2‐5 · Zbl 0987.74079
[32] PatilRU, MishraBK, SinghIV. An adaptive multiscale phase field method for brittle fracture. Comput Methods Appl Mech Eng. 2018;329:254‐288. doi:10.1016/j.cma.2017.09.021 · Zbl 1439.74368
[33] WinklerBJ. Eines, Traglastuntersuchungen von unbewehrten und bewehrten Betonstrukturen auf der Grundlage Beton, objektiven Werkstoffgesetzes fur Beton; 2001 [Online].
[34] UngerJF, EckardtS, KönkeC. Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput Methods Appl Mech Eng. 2007;196(41):4087‐4100. doi:10.1016/j.cma.2007.03.023 · Zbl 1173.74387
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.