×

Semiring and involution identities of power groups. (English) Zbl 07765341

Summary: For every group \(G\), the set \(\mathcal{P}(G)\) of its subsets forms a semiring under set-theoretical union \(\cup\) and element-wise multiplication \(\cdot \), and forms an involution semigroup under \(\cdot\) and element-wise inversion \({}^{-1} \). We show that if the group \(G\) is finite, non-Dedekind, and solvable, neither the semiring \((\mathcal{P}(G),\cup,\cdot )\) nor the involution semigroup \((\mathcal{P}(G),\cdot,{}^{-1})\) admits a finite identity basis. We also solve the finite basis problem for the semiring of Hall relations over any finite set.

MSC:

16Y60 Semirings
20M18 Inverse semigroups
08B05 Equational logic, Mal’tsev conditions

References:

[1] Almeida, J., Finite Semigroups and Universal Algebra, Series in Algebra, 3 (World Scientific, Singapore, 1995).
[2] Auinger, K., Dolinka, I. and Volkov, M. V., ‘Matrix identities involving multiplication and transposition’, J. Eur. Math. Soc. (JEMS)14 (2012), 937-969. · Zbl 1261.20068
[3] Auinger, K., Dolinka, I. and Volkov, M. V., ‘Equational theories of semigroups with involution’, J. Algebra369 (2012), 203-225. · Zbl 1294.20072
[4] Broshi, A. M., ‘Finite groups whose Sylow subgroups are abelian’, J. Algebra17 (1971), 74-82. · Zbl 0215.10305
[5] Clifford, A. H. and Preston, G. B., The Algebraic Theory of Semigroups, Vol. I, Mathematical Surveys and Monographs, 7(I) (American Mathematical Society, Providence, RI, 1961). · Zbl 0111.03403
[6] Dolinka, I., ‘A class of inherently nonfinitely based semirings’, Algebra Universalis60 (2009), 19-35. · Zbl 1172.08003
[7] Dolinka, I., ‘On identities of finite involution semigroups’, Semigroup Forum80 (2010), 105-120. · Zbl 1192.20042
[8] Dolinka, I., ‘Power semigroups of finite groups and the INFB property’, Algebra Universalis63 (2010), 239-242. · Zbl 1203.20051
[9] Fitzgerald, D. G., ‘On inverses of products of idempotents in regular semigroups’, J. Aust. Math. Soc.13 (1972), 335-337. · Zbl 0244.20079
[10] Gaysin, A. M. and Volkov, M. V., ‘Block-groups and Hall relations’, in: Semigroups, Categories, and Partial Algebras, Springer Proceedings in Mathematics and Statistics, 345 (eds. Romeo, P. G., Volkov, M. V. and Rajan, A. R.) (Springer, Singapore, 2021), 25-32. · Zbl 1540.20111
[11] Gusev, S. V. and Volkov, M. V., ‘Semiring identities of finite inverse semigroups’, Semigroup Forum (to appear), see also Preprint, 2022, arXiv:2204.10514v2. · Zbl 1522.20229
[12] Hall, M. Jr, The Theory of Groups (Macmillan, New York, 1959). · Zbl 0084.02202
[13] Howie, J. M., Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995). · Zbl 0835.20077
[14] Jackson, M., Ren, M. and Zhao, X., ‘Nonfinitely based ai-semirings with finitely based semigroup reducts’, J. Algebra611 (2022), 211-245. · Zbl 07594495
[15] Janko, Z., ‘A new finite simple group with abelian Sylow 2-subgroups and its characterization’, J. Algebra3 (1966), 147-186. · Zbl 0214.28003
[16] Ježek, J., Kepka, T. and Maróti, M., ‘The endomorphism semiring of a semilattice’, Semigroup Forum78 (2009), 21-26. · Zbl 1171.16024
[17] Jipsen, P., ‘Relation algebras, idempotent semirings and generalized bunched implication algebras’, in: Relational and Algebraic Methods in Computer Science, Lecture Notes in Computer Science, 10226 (eds. Höfner, P., Pous, D. and Struth, G.) (Springer, Cham, 2017), 144-158. · Zbl 1486.03120
[18] Kad’Ourek, J., ‘On bases of identities of finite inverse semigroups with solvable subgroups’, Semigroup Forum67 (2003), 317-343. · Zbl 1059.20053
[19] Lee, E. W. H., ‘Equational theories of unstable involution semigroups,’ Electron. Res. Announc. Math. Sci.24 (2017), 10-20. · Zbl 1401.20068
[20] Margolis, S. W. and Pin, J.-É., ‘Varieties of finite monoids and topology for the free monoid’, in: Proceedings of the 1984 Marquette Conference on Semigroups (eds. Byleen, K., Jones, P. and Pastijn, F.) (Marquette University, Milwaukee, 1985), 113-129. · Zbl 0576.20037
[21] Mogiljanskaja, E. M., ‘The solution to a problem of Tamura’, in: Modern Analysis and Geometry (eds. I. Ya. Bakelman et al.) (Leningrad. Gos. Ped. Inst., Leningrad, 1972), 148-151 (in Russian).
[22] Mogiljanskaja, E. M., ‘Non-isomorphic semigroups with isomorphic semigroups of subsets’, Semigroup Forum6 (1973), 330-333. · Zbl 0267.20059
[23] Montague, J. S. and Plemmons, R. J., ‘Maximal subgroups of the semigroup of relations’, J. Algebra13 (1969), 575-587. · Zbl 0184.03703
[24] Pin, J.-É., ‘Variétés de langages et monoïde des parties’, Semigroup Forum20 (1980), 11-47 (in French). · Zbl 0451.20061
[25] Pin, J.-É., ‘ \( \text{BG}=\text{PG} \) , a success story’, in: Semigroups, Formal Languages and Groups, Nato Science Series C, 466 (ed. Fountain, J.) (Kluwer Academic Publishers, Dordrecht-Boston-London, 1995), 33-47. · Zbl 0872.20054
[26] Pin, J.-É., ‘Tropical semirings’, in: Idempotency, Publications of the Newton Institute, 11 (ed. Gunawardena, J.) (Cambridge University Press, Cambridge, 1998), 50-69. · Zbl 0909.16028
[27] Polák, L., ‘Syntactic semiring of a language’, in: Mathematical Foundations of Computer Science 2001, Lecture Notes in Computer Science, 2136 (eds. Sgall, J., Pultr, A. and Kolman, P.) (Springer, Berlin-Heidelberg, 2001), 611-620. · Zbl 1005.68526
[28] Polák, L., ‘Syntactic semiring and universal automaton’, In: Developments in Language Theory 2003, Lecture Notes in Computer Science, 2710 (eds. Ésik, Z. and Fülöp, Z.) (Springer, Berlin-Heidelberg, 2003), 411-422. · Zbl 1037.68099
[29] Ren, M. and Zhao, X., ‘The varieties of semilattice-ordered semigroups satisfying \({x}^3\approx x\) and \({xy\approx yx}\) ’, Period. Math. Hungar.72 (2016), 158-170. · Zbl 1399.20062
[30] Volkov, M. V., ‘The finite basis problem for finite semigroups’, Sci. Math. Jpn.53 (2001), 171-199, a periodically updated version is available under http://csseminar.math.ru/MATHJAP_revisited.pdf. · Zbl 0990.20039
[31] Volkov, M. V., ‘Semiring identities of the Brandt monoid’, Algebra Universalis82 (2021), Article no. 42. · Zbl 1469.16091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.