×

Dynamic community partitioning for e-commerce last mile delivery with time window constraints. (English) Zbl 07764431

Summary: Community logistics (CL) is a recently proposed delivery strategy designed to deal with e-commerce last-mile delivery scheduling by dynamically assigning vehicles to designated delivery regions partitioned into “communities”. Since optimizing vehicle routes is not mandatory in the CL spectrum, the delivery solution format and optimization process can be greatly simplified. Nevertheless, abandoning vehicle routes means vehicle arrival time at each customer specified delivery destination is unknown, resulting in the inability of handling time window constraints of e-commerce orders. To expand the application scope of CL, this study introduces community time window, an aggregation of identical or adjacent order time windows. Once the community time window for a delivery community is satisfied, all orders in this community can be received within designated time windows without determining vehicle routes. With this new concept, the application range of the CL is extended to e-commerce last mile delivery contexts where order time window constraints are considered. A dynamic community partitioning problem with the time window is presented based on the Markov decision process (MDP). An efficient heuristic solution framework based on policy function approximation is proposed to solve the MDP model. Numerical results show that the CL is very effective in dealing with the time window constraints of e-commerce orders.

MSC:

90Bxx Operations research and management science
Full Text: DOI

References:

[1] Abbatecola, L., Fanti, M. P., Pedroncelli, G., & Ukovich, W. (2018). A New Cluster-Based Approach for the Vehicle Routing Problem with Time Windows. IEEE International Conference on Automation Science and Engineering, 2018-Augus, 744-749. https://doi.org/10.1109/COASE.2018.8560419.
[2] Azi, N.; Gendreau, M.; Potvin, J.-Y., A dynamic vehicle routing problem with multiple delivery routes, Ann. Operat. Res., 199, 1, 103-112 (2012) · Zbl 1251.90081
[3] Battarra, M.; Erdoǧan, G.; Vigo, D., Exact algorithms for the clustered vehicle routing problem, Oper. Res., 62, 1, 58-71 (2014) · Zbl 1291.90030
[4] Bender, M.; Kalcsics, J.; Meyer, A., Districting for parcel delivery services - A two-Stage solution approach and a real-World case study, Omega (United Kingdom), 96, 102283 (2020)
[5] Carlsson, J. G., Dividing a territory among several vehicles, INFORMS J. Comput., 24, 4, 565-577 (2012) · Zbl 1460.90028
[6] Carlsson, J. G.; Delage, E., Robust partitioning for stochastic multivehicle routing, Oper. Res., 61, 3, 727-744 (2013) · Zbl 1273.90022
[7] Chien, T. W., Operational estimators for the length of a traveling salesman tour, Comput. Oper. Res., 19, 6, 469-478 (1992) · Zbl 0765.90088
[8] Comert, S. E.; Yazgan, H. R.; Kır, S.; Yener, F., A cluster first-route second approach for a capacitated vehicle routing problem: A case study, Int. J. Procurem. Manage., 11, 4, 399-419 (2018)
[9] Cuda, R.; Guastaroba, G.; Speranza, M. G., A survey on two-echelon routing problems, Comput. Oper. Res., 55, 185-199 (2015) · Zbl 1348.90078
[10] Ewbank, H.; Wanke, P.; Hadi-Vencheh, A., An unsupervised fuzzy clustering approach to the capacitated vehicle routing problem, Neural Comput. & Applic., 27, 4, 857-867 (2016)
[11] Fan, H.; Zhang, Y.; Tian, P.; Lv, Y.; Fan, H., Time-dependent multi-depot green vehicle routing problem with time windows considering temporal-spatial distance, Comput. Oper. Res., 129, Article 105211 pp. (2021) · Zbl 1510.90036
[12] Gillett, B. E.; Miller, L. R., A Heuristic Algorithm for the Vehicle-Dispatch Problem, Oper. Res., 22, 2, 340-349 (1974) · Zbl 0274.90013
[13] González-Ramírez, R. G.; Smith, N. R.; Askin, R. G.; Miranda, P. A.; Sánchez, J. M., A hybrid metaheuristic approach to optimize the districting design of a parcel company, J. Applied Res. Technol. (2011)
[14] Hollis, B. L.; Green, P. J., Real-life vehicle routing with time windows for visual attractiveness and operational robustness, Asia-Pacific J. Oper. Res., 29, 04, 1250017 (2012) · Zbl 1250.90018
[15] Hsieh, L.-F.; Huang, Y.-C., New batch construction heuristics to optimise the performance of order picking systems, Int. J. Prod. Econ., 131, 2, 618-630 (2011)
[16] Huang, Y.; Savelsbergh, M.; Zhao, L., Designing logistics systems for home delivery in densely populated urban areas, Transp. Res. B Methodol., 115, 95-125 (2018)
[17] Kalcsics, J. (2015). Districting Problems. In Location Science. https://doi.org/10.1007/978-3-319-13111-5_23.
[18] Klapp, M. A.; Erera, A. L.; Toriello, A., The one-dimensional dynamic dispatch waves problem, Transp. Sci., 52, 2, 402-415 (2018)
[19] Koskosidis, Y.; Powell, W.; Solomon, M., Optimization-based heuristic for Vehicle Routing and Scheduling with soft Time Window constraints, Transp. Sci., 26, 2, 69-85 (1992) · Zbl 0762.90022
[20] Landa-Torres, I.; Del Ser, J.; Salcedo-Sanz, S.; Gil-Lopez, S.; Portilla-Figueras, J. A.; Alonso-Garrido, O., A comparative study of two hybrid grouping evolutionary techniques for the capacitated P-median problem, Comput. Oper. Res., 39, 9, 2214-2222 (2012) · Zbl 1251.90329
[21] Lei, H.; Laporte, G.; Guo, B.o., Districting for routing with stochastic customers, EURO J. Transport. Logist., 1, 1-2, 67-85 (2012)
[22] Lei, H.; Wang, R.; Laporte, G., Solving a multi-objective dynamic stochastic districting and routing problem with a co-evolutionary algorithm, Comput. Oper. Res., 67, 12-24 (2016) · Zbl 1349.90098
[23] Leung, K. H.; Choy, K. L.; Siu, P. K.Y.; Ho, G. T.S.; Lam, H. Y.; Lee, C. K.M., A B2C e-commerce intelligent system for re-engineering the e-order fulfilment process, Expert Syst. Appl., 91, 386-401 (2018)
[24] Leung, E. K.H.; Ouyang, Z.; Huang, G. Q., Community logistics: a dynamic strategy for facilitating immediate parcel delivery to smart lockers, Int. J. Prod. Res., 61, 9, 2937-2962 (2023)
[25] Li, H.; Wang, H.; Chen, J.; Bai, M., Two-echelon vehicle routing problem with time windows and mobile satellites, Transp. Res. B Methodol., 138, 179-201 (2020)
[26] Lin, Y. H.; Wang, Y.; Lee, L. H.; Chew, E. P., Omnichannel facility location and fulfillment optimization, Transp. Res. B Methodol., 163, 187-209 (2022)
[27] Luo, J.; Chen, M.-R., Multi-phase modified shuffled frog leaping algorithm with extremal optimization for the MDVRP and the MDVRPTW, Comput. Ind. Eng., 72, 84-97 (2014)
[28] Mai, F.; Fry, M. J.; Ohlmann, J. W., Model-based capacitated clustering with posterior regularization, Eur. J. Oper. Res., 271, 2, 594-605 (2018) · Zbl 1403.90519
[29] Mourão, M. C.; Nunes, A. C.; Prins, C., Heuristic methods for the sectoring arc routing problem, Eur. J. Oper. Res., 196, 3, 856-868 (2009) · Zbl 1176.90074
[30] Nallusamy, R.; Duraiswamy, K.; Dhanalaksmi, R.; Parthiban, P., Optimization of Non-Linear Multiple Traveling Salesman Problem Using K-Means Clustering, Shrink Wrap Algorithm and Meta-Heuristics, Int. J. Nonlinear Sci., 9, 4, 171-177 (2010) · Zbl 1197.90059
[31] Ouyang, Z.; Leung, E. K.H.; Huang, G. Q., Community logistics and dynamic community partitioning: A new approach for solving e-commerce last mile delivery, Eur. J. Oper. Res., 307, 1, 140-156 (2023) · Zbl 1541.90073
[32] Ouyang, Z.; Leung, E. K.H.; Huang, G. Q., Community logistics for dynamic vehicle dispatching: The effects of community departure “time” and “space”, Transpor. Res. Part E: Logist. Transportat. Rev., 165, Article 102842 pp. (2022)
[33] Pillac, V.; Gendreau, M.; Guéret, C.; Medaglia, A. L., A review of dynamic vehicle routing problems, Eur. J. Oper. Res., 225, 1, 1-11 (2013) · Zbl 1292.90203
[34] Powell, W. B., Perspectives of approximate dynamic programming, Ann. Operations Res., 241, 1-2, 319-356 (2016) · Zbl 1348.90612
[35] Qi, M.; Lin, W. H.; Li, N.; Miao, L., A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows, Transport. Res. Part E: Logist. Transport. Rev., 48, 1, 248-257 (2012)
[36] Qian, J., Ecommerce Trends During Covid-19, Int. J. Future Generat. Commun. Network., 13, July, 1-25 (2020)
[37] Rossit, D. G.; Vigo, D.; Tohmé, F.; Frutos, M., Visual attractiveness in routing problems: A review, Comput. Oper. Res., 103, 13-34 (2019) · Zbl 1458.90134
[38] Sahoo, S.; Kim, S.; Kim, B. I.; Kraas, B.; Popov, A., Routing optimization for Waste Management, Interfaces, 35, 1, 24-36 (2005)
[39] Sandoval, M. G.; Álvarez-Miranda, E.; Pereira, J.; Ríos-Mercado, R. Z.; Díaz, J. A., A novel districting design approach for on-time last-mile delivery: An application on an express postal company, Omega, 113 (2022)
[40] Savelsbergh, M.; Van Woensel, T., 50th Anniversary Invited Article—City Logistics: Challenges and Opportunities, Transp. Sci., 50, 2, 579-590 (2016)
[41] Schneider, M.; Stenger, A.; Schwahn, F.; Vigo, D., Territory-based vehicle routing in the presence of time-window constraints, Transp. Sci., 49, 4, 732-751 (2015)
[42] Stroh, A. M.; Erera, A. L.; Toriello, A., Tactical design of same-day delivery systems, Management Science, 68, 5, 3444-3463 (2022)
[43] Ulmer, M. W.; Thomas, B. W.; Mattfeld, D. C., Preemptive depot returns for dynamic same-day delivery, EURO J. Transport. Logist., 8, 4, 327-361 (2019)
[44] van Heeswijk, W. J.A.; Mes, M. R.K.; Schutten, J. M.J., The delivery dispatching problem with time windows for urban consolidation centers, Transp. Sci., 53, 1, 203-221 (2019)
[45] Vidal, T.; Laporte, G.; Matl, P., A concise guide to existing and emerging vehicle routing problem variants, Eur. J. Oper. Res., xxxx, 286, 2, 401-416 (2020) · Zbl 1443.90139
[46] Voccia, S. A.; Campbell, A. M.; Thomas, B. W., The same-day delivery problem for online purchases, Transp. Sci., 53, 1, 167-184 (2019)
[47] Wang, H., Routing and scheduling for a last-mile transportation system, Transp. Sci., 53, 1, 131-147 (2019)
[48] Wang, Y.; Zhang, S.; Guan, X.; Peng, S.; Wang, H.; Liu, Y.; Xu, M., Collaborative multi-depot logistics network design with time window assignment, Expert Syst. Appl., 140, 112910 (2020)
[49] Winkenbach, M.; Kleindorfer, P. R.; Spinler, S., Enabling urban logistics services at la poste through multi-echelon location-routing, Transp. Sci., 50, 2, 520-540 (2016)
[50] Yücenur, G. N.; Demirel, N.Ç., A new geometric shape-based genetic clustering algorithm for the multi-depot vehicle routing problem, Expert Syst. Appl., 38, 9, 11859-11865 (2011)
[51] Zhang, W.; Yang, D.; Zhang, G.; Gen, M., Hybrid multiobjective evolutionary algorithm with fast sampling strategy-based global search and route sequence difference-based local search for VRPTW, Expert Syst. Appl., 145, Article 113151 pp. (2020)
[52] Zunic, E., Donko, D., Supic, H., & Delalic, S. (2020). Cluster-based approach for successful solving real-world vehicle routing problems. Proceedings of the 2020 Federated Conference on Computer Science and Information Systems, FedCSIS 2020, 21, 619-626. https://doi.org/10.15439/2020F184.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.