×

Pfaffian formula for fermion parity fluctuations in a superconductor and application to Majorana fusion detection. (English) Zbl 07760954

Summary: Kitaev’s Pfaffian formula equates the ground-state fermion parity of a closed system to the sign of the Pfaffian of the Hamiltonian in the Majorana basis. Using Klich’s theory of counting statistics for paired fermions, the Pfaffian formula is generalized to account for quantum fluctuations in the fermion parity of an open subsystem. A statistical description in the framework of random-matrix theory is used to answer the question when a vanishing fermion parity in a superconductor fusion experiment becomes a distinctive signature of an isolated Majorana zero-mode.
© 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

MSC:

81V74 Fermionic systems in quantum theory
82D55 Statistical mechanics of superconductors
15B52 Random matrices (algebraic aspects)
15A15 Determinants, permanents, traces, other special matrix functions

References:

[1] A. V.Balatsky, I.Vekhter, Jian‐XinZhu, Rev. Mod. Phys.2006, 78, 373.
[2] A.Sakurai, Prog. Theor. Phys.1970, 44, 1472.
[3] A. Yu.Kitaev, Phys. Usp.2001, 44, 131.
[4] A.Altland, M. R.Zirnbauer, Phys. Rev. B1997, 55, 1142.
[5] C. W. J.Beenakker, Rev. Mod. Phys.2015, 87, 1037.
[6] D. J.Clarke, J. D.Sau, S. DasSarma, Phys. Rev. B2017, 95, 155451.
[7] D.Aasen, M.Hell, R. V.Mishmash, A.Higginbotham, J.Danon, M.Leijnse, T. S.Jespersen, J. A.Folk, C. M.Marcus, K.Flensberg, J.Alicea, Phys. Rev. X2016, 6, 031016.
[8] J. H. H.Perk, H. W.Capel, Physica1977, 89A, 264.
[9] J. H. H.Perk, H. W.Capel, G. R. W.Quispel, F. W.Nijhoff, Physica1984, 123A, 1.
[10] S.Bravyi, Quantum Inf. Comp.2005, 5, 216. · Zbl 1213.81057
[11] B.Bauer, T.Karzig, R. V.Mishmash, A. E.Antipov, J.Alicea, SciPost Phys.2018, 5, 004.
[12] I.Klich, J. Stat. Mech.2014, P11006. When comparing formulas, note that Klich has a factor of two in the anticommutator of Majorana operators.
[13] J.‐C.Budich, E.Ardonne, Phys. Rev. B2013, 88, 075419.
[14] P. G.De Gennes, Superconductivity of Metals and Alloys, Benjamin, New York1966. · Zbl 0138.22801
[15] Wikipedia has a helpful collection of Pfaffian formulas.
[16] J.Rubow, U.Wolff, Comp. Phys. Comm.2011, 182, 2530. · Zbl 1261.65031
[17] M.Wimmer, ACM Trans. Math. Software2012, 38, 30. · Zbl 1365.65116
[18] C.Nayak, S. H.Simon, A.Stern, M.Freedman, S. DasSarma, Rev. Mod. Phys.2008, 80, 1083. · Zbl 1205.81062
[19] The converse is not excluded: \( \langle \mathcal{P}_{\operatorname{L}} \rangle = 0\) without an isolated Majorana zero‐mode is possible, for example, for \(\mathcal{A} = i \left(\begin{matrix} 0 \& \lambda_1 \& 0 \& \lambda_2 \\ - \lambda_1 \& 0 \& - \lambda_2 \& 0 \\ 0 \& \lambda_2 \& 0 \& \lambda_1 \\ - \lambda_2 \& 0 \& - \lambda_1 \& 0 \end{matrix}\right)\) with \(\lambda_1 < \lambda_2\).
[20] C. W. J.Beenakker, A.Grabsch, Y.Herasymenko, SciPost Phys.2019, 6, 022.
[21] J. P.Dahlhaus, B.Béri, C. W. J.Beenakker, Phys. Rev. B2010, 82, 014536.
[22] F. J.Dyson, J. Math. Phys.1962, 3, 1199. · Zbl 0134.45703
[23] Equation [Disp. Item 20. 20 P(λ1,λ2,…λN min )∝∏n1−λn2|NL−NR|∏j<kλk2−λj22N min =min(NL,NR),0≤λn≤1 ...] follows from Equation [Disp. Item 5. 5 γ=(γ1,γ2,…,γ2N)withγ2n−1γ2n=Uanan† ...] of ref. [21] upon change of variables from transmission probabilities \(T_n\) to reflection amplitudes \(\lambda_n = \sqrt{ 1 - T_n} \).
[24] For the density profile near \(\lambda = 0\), we can approximate the distribution [Disp. Item 20. 20 P(λ1,λ2,…λN min )∝∏n1−λn2|NL−NR|∏j<kλk2−λj22N min =min(NL,NR),0≤λn≤1 ...] by \(P ( \{ \lambda \} ) \propto \prod_{j < k} ( \lambda_k^2 - \lambda_j^2 )^2\) and ignore the restriction \(| \lambda_n | \leq 1\). The distribution of the \(\lambda_n\)’s is then identical to the distribution of the energy levels of a Hermitian matrix in symmetry class D, which has the spectral peak [Disp. Item 22. 22 ρ(λ)=1δ eff +sin(2πλ/δ eff )2πλ,λ≲1/δ eff ...]. A Hermitian matrix in class DIII, rather than class D, has a vanishing density of states at zero energy, but this is not relevant for \(\rho ( \lambda )\).
[25] M. L.Mehta, Random Matrices, Elsevier, Amsterdam, The Netherlands2004. · Zbl 1107.15019
[26] D. A.Ivanov, J. Math. Phys.2002, 43, 126. · Zbl 1059.82018
[27] D. I.Pikulin, J. P.Dahlhaus, M.Wimmer, H.Schomerus, C. W. J.Beenakker, New J. Phys.2012, 14, 125011.
[28] C. I.Barbosa, T.Guhr, H. L.Harney, Phys. Rev. E2000, 62, 1936.
[29] B.Dietz, T.Guhr, H. L.Harney, A.Richter, Phys. Rev. Lett.2006, 96, 254101.
[30] The coupling matrix [Disp. Item 29. 29 Γkl=2N dot δπ∑n=12N QPC vk(n)wl(n) ...] describes a ballistic point contact. For tunnel coupling, rather than ballistic coupling, the coupling strength \(\delta_0 / \pi\) is to be multiplied by \(T_n^{- 1} ( 2 - T_n - 2 \sqrt{ 1 - T_n} )\), with \(T_n\) the tunnel probability of the n‐th mode in the QPC (see ref. [5]).
[31] V. L.Girko, Theory of Random Determinants, Springer, Berlin1990.
[32] P. J.Forrester, E.Nordenstam, Mosc. Math. J.2009, 9, 749. · Zbl 1191.15032
[33] A.Edelman, M. LaCroix, Random Matrices: Theory and Applications2015, 04, 1550021.
[34] The antisymmetric orthogonal matrices form a disconnected set in O(2N), distinguished by the sign of the Pfaffian. For the probability distribution [Disp. Item B1. B1 P({λn})∝∏n1−λn2|NL−NR|∏i<jλi2−λj22 ...], it does not matter whether or not we restrict the ensemble to \(\operatorname{ Pf } \mathcal{S} = \pm 1\).
[35] P. J.Forrester, Log‐Gases and Random Matrices, Princeton University Press, Princeton, NJ2010. · Zbl 1217.82003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.