×

A control Hamiltonian-preserving discretisation for optimal control. (English) Zbl 07758116

Summary: Optimal control theory allows finding the optimal input of a mechanical system modelled as an initial value problem. The resulting minimisation problem may be solved with known direct and indirect methods. We propose time discretisations for both methods, direct midpoint (DMP) and indirect midpoint (IMP) algorithms, which despite their similarities, result in different convergence orders for the adjoint (or co-state) variables. We additionally propose a third time-integration scheme, Indirect Hamiltonian-preserving (IHP) algorithm, which preserves the control Hamiltonian, an integral of the analytical Euler-Lagrange equations of the optimal control problem.
We test the resulting algorithms to linear and nonlinear problems with and without dissipative forces: a propelled falling mass subjected to gravity and a drag force, an elastic inverted pendulum, and the locomotion of a worm-like organism on a frictional substrate. To improve the convergence of the solution process of the discretised equations in nonlinear problems, we also propose a computational simple suboptimal initial guess and apply a forward-backward sweep method, which computes each set of variables (state, adjoint and control) in a staggered manner. We demonstrate in our examples their practical advantage for computing optimal solutions.

MSC:

49J15 Existence theories for optimal control problems involving ordinary differential equations
49M05 Numerical methods based on necessary conditions
49M25 Discrete approximations in optimal control
70E55 Dynamics of multibody systems
93C85 Automated systems (robots, etc.) in control theory

Software:

KELLEY; SOCS

References:

[1] Bayón, L.; Otero, J.; Suárez, P.; Tasis, C., New developments in the application of optimal control theory to therapeutic protocols, Math. Biosci., 272, 34-43 (2016) · Zbl 1333.49055 · doi:10.1016/j.mbs.2015.11.013
[2] Benzi, M.; Golub, G.; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[3] Betsch, P.; Becker, C., Conservation of generalized momentum maps in mechanical optimal control problems with symmetry, Int. J. Numer. Methods Eng., 111, 144-155 (2017) · Zbl 07867056 · doi:10.1002/nme.5459
[4] Betts, J., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming (2010), Philadelphia, USA: SIAM, Philadelphia, USA · Zbl 1189.49001 · doi:10.1137/1.9780898718577
[5] Bijalwan, A., Muñoz, J.J.: On the numerical stability of discretised Optimal Control Problems. IUTAM Bookseries, Springer. Under review. Available at http://arxiv.org/abs/2302.02464
[6] Bottasso, C.; Croce, A., Optimal control of multibody systems using an energy preserving direct transcription method, Multibody Syst. Dyn., 12, 4, 17-45 (2004) · Zbl 1104.70015 · doi:10.1023/B:MUBO.0000042931.61655.73
[7] Bryson, A.; Ho, Y., Applied Optimal Control. Optimization, Estimation and Control (1975), New York, U.S.A.: Taylor & Francis, New York, U.S.A.
[8] Djukić, D. S., Noether’s theorem for optimum control systems, Int. J. Control, 18, 3, 667-672 (1973) · Zbl 0281.49009 · doi:10.1080/00207177308932544
[9] Flaßkamp, K.; Murphey, T., Structure-preserving local optimal control of mechanical systems, Optim. Control Appl. Methods, 40, 2, 310-329 (2019) · Zbl 1430.49032 · doi:10.1002/oca.2479
[10] Fletcher, R.; Reeves, C., Function minimization by conjugate gradients, Comput. J., 7, 2, 149-154 (1964) · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[11] Gonzalez, O., Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 8, 449-467 (1996) · Zbl 0866.58030 · doi:10.1007/BF02440162
[12] Gray, J.; Lissmann, H., The locomotion of nematodes, J. Exp. Biol., 41, 1, 135-154 (1964) · doi:10.1242/jeb.41.1.135
[13] Huang, K.-M.; Cosman, P.; Schafer, W. R., Machine vision based detection of omega bends and reversals in C. elegans, J. Neurosci. Methods, 158, 2, 323-336 (2006) · doi:10.1016/j.jneumeth.2006.06.007
[14] Hull, D. G., Optimal Control Theory for Applications (2003), New York: Springer, New York · Zbl 1113.49001 · doi:10.1007/978-1-4757-4180-3
[15] Karrakchou, J.; Rachik, M.; Mostafa, S., Optimal control and infectiology: application to an HIV/AIDS model, Appl. Math. Comput., 177, 2, 807-818 (2006) · Zbl 1096.92031
[16] Kelley, C. T., Iterative Methods for Optimization (1999), Philadelphia: SIAM, Philadelphia · Zbl 0934.90082 · doi:10.1137/1.9781611970920
[17] Koch, M.; Leyendecker, S., Energy momentum consistent force formulation for the optimal control of multibody systems, Multibody Syst. Dyn., 29, 381-401 (2013) · doi:10.1007/s11044-012-9332-9
[18] Krieg, M.; St��hmer, J.; Cueva, J.; Fetter, R.; Spilker, K.; Cremers, D.; Shen, K.; Dunn, A.; Goodman, M., Genetic defects in ß-spectrin and tau sensitize C. elegans axons to movement-induced damage via torque-tension coupling, eLife, 6 (2017) · doi:10.7554/eLife.20172
[19] Lasdon, L.; Mitter, S.; Waren, A., The conjugate gradient method for optimal control problems, IEEE Trans. Autom. Control, 12, 2, 132-138 (1967) · doi:10.1109/TAC.1967.1098538
[20] Lauß, T.; Oberpeilsteiner, S.; Steiner, W.; Nachbagauer, K., The discrete adjoint gradient computation for optimization problems in multibody dynamics, J. Comput. Nonlinear Dyn., 12, 3 (2017) · Zbl 1386.70016 · doi:10.1115/1.4035197
[21] Leyendecker, S.; Ober-Blöbaum, S.; Marsden, J. E.; Ortiz, M., Discrete mechanics and optimal control for constrained systems, Optim. Control Appl. Methods, 39, 6, 505-528 (2009) · Zbl 1211.49039 · doi:10.1002/oca.912
[22] McAsey, M.; Mou, L.; Han, W., Convergence of the forward-backward sweep method in optimal control, Comput. Optim. Appl., 53, 207-226 (2012) · Zbl 1258.49040 · doi:10.1007/s10589-011-9454-7
[23] Miller, M.; Trouvé, A.; Younes, L., Hamiltonian systems and optimal control in computational anatomy: 100 years since D’Arcy Thompson, Ann. Biomed. Eng., 17, 447-509 (2015) · doi:10.1146/annurev-bioeng-071114-040601
[24] Muñoz, J. J.; Condamin, L.; Doste, D., On the net displacement of contact surface centroid in contractile bodies, Mech. Res. Commun., 119 (2022) · doi:10.1016/j.mechrescom.2021.103809
[25] Nachbagauer, K.; Oberpeilsteiner, S.; Sherif, K.; Steiner, W., The use of the adjoint method for solving typical optimization problems in multibody dynamics, J. Comput. Nonlinear Dyn., 10, 6 (2015) · doi:10.1115/1.4028417
[26] Nocedal, J.; Wright, S., Numerical Optimization (2006), New York: Springer, New York · Zbl 1104.65059
[27] Ober-Blöbaum, S.; Junge, O.; Marsden, J., Discrete mechanics and optimal control: an analysis, ESAIM Control Optim. Calc. Var., 17, 2, 322-352 (2011) · Zbl 1357.49120 · doi:10.1051/cocv/2010012
[28] Pesch, H., Plail, M.: The cold war and the maximum principle of optimal control. Optimization Stories. Documenta Mathematica (2012) · Zbl 1266.01023
[29] Pikuliński, M.; Malczyk, P., Adjoint method for optimal control of multibody systems in the Hamiltonian setting, Mech. Mach. Theory, 166 (2021) · doi:10.1016/j.mechmachtheory.2021.104473
[30] Purcell, E., Live at low Reynolds number, Am. J. Phys., 45, 1, 3-11 (1977) · doi:10.1119/1.10903
[31] Rao, A. V., A survey of numerical methods for optimal control, Adv. Astronaut. Sci., 135, 1, 497-528 (2009)
[32] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Philadelphia: SIAM, Philadelphia · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[33] Schmitthenner, D.; Martin, A., Comparing system identification techniques for identifying human-like walking controllers, R. Soc. Open Sci., 8, 12 (2021) · doi:10.1098/rsos.211031
[34] Schwind, W.; Koditschek, D., Approximating the stance map of a 2-DOF monoped runner, J. Nonlinear Sci., 10, 5, 533-568 (2000) · Zbl 0967.37036 · doi:10.1007/s004530010001
[35] Sharma, H.; Patil, M.; Woolsey, C., A review of structure-preserving numerical methods for engineering applications, Comput. Methods Appl. Mech. Eng., 366 (2020) · Zbl 1442.65444 · doi:10.1016/j.cma.2020.113067
[36] Sharp, J.; Burrage, K.; Simpson, M., Implementation and acceleration of optimal control for systems biology, J. R. Soc. Interface, 18 (2021) · doi:10.1098/rsif.2021.0241
[37] Simo, J.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics, Z. Angew. Math. Phys., 43, 757-792 (1992) · Zbl 0758.73001 · doi:10.1007/BF00913408
[38] Stengel, R., Optimal Control and Estimation (1994), New York, USA: Dover, New York, USA · Zbl 0854.93001
[39] Stephens, G.; Johnson-Kerner, B.; Bialek, W.; Ryu, W., Dimensionality and dynamics in the behavior of C. elegans, PLoS Comput. Biol., 4 (2008) · doi:10.1371/journal.pcbi.1000028
[40] Sussmann, H.; Willems, J., 300 years of optimal control: from the brachystochrone to the maximum principle, IEEE Control Syst. Mag., 17, 3, 32-44 (1997) · Zbl 1014.49001 · doi:10.1109/37.588098
[41] Timmerman, P.; van der Weele, J. P., On the rise and fall of a ball with linear or quadratic drag, Am. J. Phys., 67, 6, 538-546 (1999) · doi:10.1119/1.19320
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.