×

Online distributed detection of sensor networks with delayed information. (English) Zbl 07757309

Summary: Distributed decision on sensor network is affected by the bandwidth, network congestion, and computation capability of sensors, which cause the communication delays and feedback delays during the signal processing process. In this paper, the effects of state constraints, directed graph, communication delays and feedback delays on the online distributed parameter estimation problem for multi-sensor networks are considered comprehensively. To this end, we first propose an Online Decentralized Gradient Descent Algorithm (ODGDA) to overcome the effects of these factors and give the regret upper bounds for convex loss function and strongly convex loss function, respectively. Further, considering that the loss function may not be fully disclosed in the complex environment, we extend ODGDA to the scenario of bandit feedback and propose an Online Decentralized Bandit Feedback Algorithm (ODBFA), which is updated using historical state information stored by sensors. The analysis shows that, compared with the ODGDA which can directly use the gradient information for state update, the ODBFA utilizing two-point bandit feedback information does not lead to regret degradation in the order sense. Finally, the effectiveness of the proposed algorithm is verified by the multi-sensor network.

MSC:

68Mxx Computer system organization
68Wxx Algorithms in computer science

Software:

AsySPA
Full Text: DOI

References:

[1] Qi, H.; Iyengar, S.; Chakrabarty, K., Distributed sensor networks - a review of recent research, J. Franklin Inst., 338, 6, 655-668 (2001) · Zbl 1169.93314
[2] Gong, J.; Ma, Y.; Jiang, B.; Mao, Z., Distributed adaptive fault-tolerant formation control for heterogeneous multiagent systems under switching directed topologies, J. Franklin Inst., 359, 8, 3366-3388 (2022) · Zbl 1489.93054
[3] Gao, Y.; Xiao, F.; Liu, J.; Wang, R., Distributed soft fault detection for interval type-2 fuzzy-model-based stochastic systems with wireless sensor networks, IEEE Trans. Ind. Inf., 15, 1, 334-347 (2019)
[4] Vazquez-Olguin, M.; Shmaliy, Y. S.; Ibarra-Manzano, O. G., Distributed ufir filtering over wsns with consensus on estimates, IEEE Trans. Ind. Inf., 16, 3, 1645-1654 (2020)
[5] Kobayashi, Y.; Endo, T.; Matsuno, F., Distributed formation for robotic swarms considering their crossing motion, J. Franklin Inst., 355, 17, 8698-8722 (2018) · Zbl 1402.93027
[6] Zhou, Z.; Wang, H.; Wang, Y.; Xue, X.; Zhang, M., Distributed formation control for multiple quadrotor uavs under markovian switching topologies with partially unknown transition rates, J. Franklin Inst., 356, 11, 5706-5728 (2019) · Zbl 1415.93038
[7] Calafiore, G. C.; Abrate, F., Distributed linear estimation over sensor networks, Int. J. Control, 82, 5, 868-882 (2009) · Zbl 1165.93032
[8] Bertrand, A.; Moonen, M., Distributed adaptive node-specific signal estimation in fully connected sensor networks part i: sequential node updating, IEEE Trans. Signal Process., 58, 10, 5277-5291 (2010) · Zbl 1392.94100
[9] Bertrand, A.; Moonen, M., Distributed adaptive node-specific signal estimation in fully connected sensor networks part ii: simultaneous and asynchronous node updating, IEEE Trans. Signal Process., 58, 10, 5292-5306 (2010) · Zbl 1392.94101
[10] Bertrand, A.; Moonen, M., Consensus-based distributed total least squares estimation in ad hoc wireless sensor networks, IEEE Trans. Signal Process., 59, 5, 2320-2330 (2011) · Zbl 1391.90132
[11] Zhou, Q.; Kar, S.; Huie, L.; Poor, H. V.; Cui, S., Robust distributed least-squares estimation in sensor networks with node failures, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, 1-6 (2011)
[12] Garca-Ligero, M.; Hermoso-Carazo, A.; Linares-Prez, J., Distributed and centralized fusion estimation from multiple sensors with markovian delays, Appl. Math. Comput., 219, 6, 2932-2948 (2012) · Zbl 1309.94036
[13] Wang, J.; Ahn, I. S.; Lu, Y.; Yang, T.; Staskevich, G., A distributed least-squares algorithm in wireless sensor networks with limited communication, 2017 IEEE International Conference on Electro Information Technology (EIT), 467-471 (2017)
[14] Zinkevich, M., Online convex programming and generalized infinitesimal gradient ascent, Proceedings, Twentieth International Conference on Machine Learning, 2, 928-935 (2003)
[15] Nedic, A.; Ozdaglar, A., Convergence rate for consensus with delays, J. Global Optim., 47, 3, 437-456 (2010) · Zbl 1214.93012
[16] Tsianos, K. I.; Rabbat, M. G., Distributed consensus and optimization under communication delays, 2011 49th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2011, 974-982 (2011)
[17] Tsianos, K. I.; Rabbat, M. G., Distributed dual averaging for convex optimization under communication delays, Proc. Am. Control Conf., 1067-1072 (2012)
[18] Zhang, J.; You, K., Asyspa: an exact asynchronous algorithm for convex optimization over digraphs, IEEE Trans. Automat. Contr., 65, 6, 2494-2509 (2020) · Zbl 07256364
[19] Assran, M. S.; Rabbat, M. G., Asynchronous gradient push, IEEE Trans. Automat. Contr., 66, 1, 168-183 (2021) · Zbl 1536.93788
[20] Wang, H.; Liao, X.; Huang, T.; Li, C., Cooperative distributed optimization in multiagent networks with delays, IEEE Trans. Syst. Man Cybernet.: Syst., 45, 2, 363-369 (2015)
[21] Wang, C.; Xu, S.; Yuan, D.; Chu, Y.; Zhang, Z., Cooperative convex optimization with subgradient delays using push-sum distributed dual averaging, J. Franklin Inst., 358, 14, 7254-7269 (2021) · Zbl 1471.93024
[22] Langford, J.; Smola, A. J.; Zinkevich, M., Slow learners are fast, Adv. Neural Inf. Process. Syst. 22 - Proceedings of the 2009 Conference, 2331-2339 (2009)
[23] Cao, X.; Baxar, T., Decentralized online convex optimization with feedback delays, IEEE Trans. Automat. Contr., 67, 6, 2889-2904 (2022) · Zbl 1537.93022
[24] Flaxman, A. D.; Kalai, A. T.; McMahan, H. B., Online convex optimization in the bandit setting: gradient descent without a gradient, Proc. Annual ACM-SIAM Sympos. Discrete Algor., 385-394 (2005) · Zbl 1297.90117
[25] Agarwal, A.; Dekel, O.; Xiao, L., Optimal algorithms for online convex optimization with multi-point bandit feedback, COLT 2010 - The 23rd Conference on Learning Theory, 28-40 (2010)
[26] Koppel, A.; Jakubiec, F. Y.; Ribeiro, A., A saddle point algorithm for networked online convex optimization, IEEE Trans. Signal Process., 63, 19, 5149-5164 (2015) · Zbl 1394.94285
[27] Yuan, D.; Hong, Y.; Ho, D. W.C.; Xu, S., Distributed mirror descent for online composite optimization, IEEE Trans. Automat. Contr., 66, 2, 714-729 (2021) · Zbl 1536.93054
[28] Li, J.; Gu, C.; Wu, Z.; Huang, T., Online learning algorithm for distributed convex optimization with time-varying coupled constraints and bandit feedback, IEEE Trans. Cybern., 52, 2, 1009-1020 (2022)
[29] Shahrampour, S.; Jadbabaie, A., Distributed online optimization in dynamic environments using mirror descent, IEEE Trans. Automat. Contr., 63, 3, 714-725 (2018) · Zbl 1390.90125
[30] Cao, X.; Liu, K. J.R., Online convex optimization with time-varying constraints and bandit feedback, IEEE Trans. Automat. Contr., 64, 7, 2665-2680 (2019) · Zbl 1482.90126
[31] Luo, B.; Cheng, L.; Wu, Y.-C., Fully distributed clock synchronization in wireless sensor networks under exponential delays, Signal Process., 125, 261-273 (2016)
[32] Lu, L.; Zhao, H.; Champagne, B., Diffusion total least-squares algorithm with multi-node feedback, Signal Process., 153, 243-254 (2018)
[33] Modalavalasa, S.; Sahoo, U. K.; Sahoo, A. K.; Baraha, S., A review of robust distributed estimation strategies over wireless sensor networks, Signal Process., 188 (2021)
[34] Qu, G.; Li, N., Harnessing smoothness to accelerate distributed optimization, IEEE Trans. Control Netw. Syst., 5, 3, 1245-1260 (2018) · Zbl 1515.93111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.