×

Pole-skipping in rotating BTZ black holes. (English) Zbl 07749014

Summary: Motivated by the connection between pole-skipping phenomena of two point functions and four point out-of-time-order correlators, we study the pole-skipping phenomena for rotating BTZ black holes. In particular, we investigate the effect of rotations on the pole-skipping point for various fields with spin \(s = 1/2, 1, 2/3\), extending the previous research for \(s = 0, 2\). We derive an analytic full tower of the pole-skipping points of fermionic (\(s = 1/2\)) and vector (\(s = 1\)) fields by the exact holographic Green’s functions. For the non-extremal black hole, the leading pole-skipping frequency is \(\omega_{\mathrm{leading}} = 2 \pi iT_h(s - 1 + \nu \Omega)/(1 - \Omega^2)\) where \(T_h\) is the temperature, \(\Omega\) the rotation, and \(\nu := (\Delta_+ - \Delta_-)/2\), the difference of conformal dimensions (\(\Delta_\pm)\). These are confirmed by another independent method: the near-horizon analysis. For the extremal black hole, we find that the leading pole-skipping frequency can occur at \(\omega_{\mathrm{leading}}^{\mathrm{extremal}} = -2\pi iT_R(s + 1)\) only when \(\nu = s + 1\), where \(T_R\) is the temperature of the right moving mode. It is non-trivial because it cannot be achieved by simply taking the extreme limit \((T_h \rightarrow 0, \Omega \rightarrow 1)\) of the non-extremal black hole result.

MSC:

81-XX Quantum theory

References:

[1] Maldacena, JM, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[2] Witten, E., Anti-de Sitter space and holography, Adv. Theor. Math. Phys., 2, 253 (1998) · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[3] Witten, E., Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys., 2, 505 (1998) · Zbl 1057.81550 · doi:10.4310/ATMP.1998.v2.n3.a3
[4] Gubser, SS; Klebanov, IR; Polyakov, AM, Gauge theory correlators from noncritical string theory, Phys. Lett. B, 428, 105 (1998) · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[5] S. Grozdanov, K. Schalm and V. Scopelliti, Black hole scrambling from hydrodynamics, Phys. Rev. Lett.120 (2018) 231601 [arXiv:1710.00921] [INSPIRE].
[6] Blake, M.; Davison, RA; Grozdanov, S.; Liu, H., Many-body chaos and energy dynamics in holography, JHEP, 10, 035 (2018) · Zbl 1402.83053 · doi:10.1007/JHEP10(2018)035
[7] Blake, M.; Lee, H.; Liu, H., A quantum hydrodynamical description for scrambling and many-body chaos, JHEP, 10, 127 (2018) · Zbl 1402.81163 · doi:10.1007/JHEP10(2018)127
[8] Blake, M.; Liu, H., On systems of maximal quantum chaos, JHEP, 05, 229 (2021) · Zbl 1466.81027 · doi:10.1007/JHEP05(2021)229
[9] Jeong, H-S; Kim, K-Y; Sun, Y-W, Bound of diffusion constants from pole-skipping points: spontaneous symmetry breaking and magnetic field, JHEP, 07, 105 (2021) · doi:10.1007/JHEP07(2021)105
[10] C. Choi, M. Mezei and G. Sárosi, Pole skipping away from maximal chaos, arXiv:2010.08558 [INSPIRE].
[11] Haehl, FM; Rozali, M., Effective Field Theory for Chaotic CFTs, JHEP, 10, 118 (2018) · Zbl 1402.81223 · doi:10.1007/JHEP10(2018)118
[12] K. Jensen, Scrambling in nearly thermalized states at large central charge, arXiv:1906.05852 [INSPIRE].
[13] Das, S.; Ezhuthachan, B.; Kundu, A., Real time dynamics from low point correlators in 2d BCFT, JHEP, 12, 141 (2019) · Zbl 1431.81118 · doi:10.1007/JHEP12(2019)141
[14] Haehl, FM; Reeves, W.; Rozali, M., Reparametrization modes, shadow operators, and quantum chaos in higher-dimensional CFTs, JHEP, 11, 102 (2019) · Zbl 1429.81045 · doi:10.1007/JHEP11(2019)102
[15] Ramirez, DM, Chaos and pole skipping in CFT_2, JHEP, 12, 006 (2021) · Zbl 1521.81327 · doi:10.1007/JHEP12(2021)006
[16] M. Natsuume and T. Okamura, Nonuniqueness of scattering amplitudes at special points, Phys. Rev. D104 (2021) 126007 [arXiv:2108.07832] [INSPIRE].
[17] Grozdanov, S.; Kovtun, PK; Starinets, AO; Tadić, P., The complex life of hydrodynamic modes, JHEP, 11, 097 (2019) · Zbl 1429.83090 · doi:10.1007/JHEP11(2019)097
[18] Blake, M.; Davison, RA; Vegh, D., Horizon constraints on holographic Green’s functions, JHEP, 01, 077 (2020) · Zbl 1434.83123 · doi:10.1007/JHEP01(2020)077
[19] Natsuume, M.; Okamura, T., Nonuniqueness of Green’s functions at special points, JHEP, 12, 139 (2019) · Zbl 1431.83104 · doi:10.1007/JHEP12(2019)139
[20] M. Natsuume and T. Okamura, Holographic chaos, pole-skipping, and regularity, PTEP2020 (2020) 013B07 [arXiv:1905.12014] [INSPIRE]. · Zbl 1483.81124
[21] M. Natsuume and T. Okamura, Pole-skipping with finite-coupling corrections, Phys. Rev. D100 (2019) 126012 [arXiv:1909.09168] [INSPIRE].
[22] Wu, X., Higher curvature corrections to pole-skipping, JHEP, 12, 140 (2019) · Zbl 1431.83159 · doi:10.1007/JHEP12(2019)140
[23] Ceplak, N.; Ramdial, K.; Vegh, D., Fermionic pole-skipping in holography, JHEP, 07, 203 (2020) · Zbl 1451.83077 · doi:10.1007/JHEP07(2020)203
[24] Ahn, Y.; Jahnke, V.; Jeong, H-S; Kim, K-Y, Scrambling in Hyperbolic Black Holes: shock waves and pole-skipping, JHEP, 10, 257 (2019) · Zbl 1427.83076 · doi:10.1007/JHEP10(2019)257
[25] Ahn, Y.; Jahnke, V.; Jeong, H-S; Kim, K-Y; Lee, K-S; Nishida, M., Pole-skipping of scalar and vector fields in hyperbolic space: conformal blocks and holography, JHEP, 09, 111 (2020) · Zbl 1454.83108 · doi:10.1007/JHEP09(2020)111
[26] Abbasi, N.; Tahery, S., Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP, 10, 076 (2020) · Zbl 1456.83072 · doi:10.1007/JHEP10(2020)076
[27] Liu, Y.; Raju, A., Quantum Chaos in Topologically Massive Gravity, JHEP, 12, 027 (2020) · Zbl 1457.83015 · doi:10.1007/JHEP12(2020)027
[28] Ahn, Y.; Jahnke, V.; Jeong, H-S; Lee, K-S; Nishida, M.; Kim, K-Y, Classifying pole-skipping points, JHEP, 03, 175 (2021) · Zbl 1461.81088 · doi:10.1007/JHEP03(2021)175
[29] M. Natsuume and T. Okamura, Pole-skipping and zero temperature, Phys. Rev. D103 (2021) 066017 [arXiv:2011.10093] [INSPIRE].
[30] K.-Y. Kim, K.-S. Lee and M. Nishida, Holographic scalar and vector exchange in OTOCs and pole-skipping phenomena, JHEP04 (2021) 092 [arXiv:2011.13716] [Erratum ibid.04 (2021) 229] [INSPIRE].
[31] Sil, K., Pole skipping and chaos in anisotropic plasma: a holographic study, JHEP, 03, 232 (2021) · doi:10.1007/JHEP03(2021)232
[32] N. Ceplak and D. Vegh, Pole-skipping and Rarita-Schwinger fields, Phys. Rev. D103 (2021) 106009 [arXiv:2101.01490] [INSPIRE].
[33] Kim, K-Y; Lee, K-S; Nishida, M., Regge conformal blocks from the Rindler-AdS black hole and the pole-skipping phenomena, JHEP, 11, 020 (2021) · Zbl 1521.83127 · doi:10.1007/JHEP11(2021)020
[34] Blake, M.; Davison, RA, Chaos and pole-skipping in rotating black holes, JHEP, 01, 013 (2022) · Zbl 1521.83092 · doi:10.1007/JHEP01(2022)013
[35] K.-Y. Kim, K.-S. Lee and M. Nishida, Construction of bulk solutions for towers of pole-skipping points, Phys. Rev. D105 (2022) 126011 [arXiv:2112.11662] [INSPIRE].
[36] Jeong, H-S; Kim, K-Y; Sun, Y-W, Quasi-normal modes of dyonic black holes and magneto-hydrodynamics, JHEP, 07, 065 (2022) · Zbl 1522.83198 · doi:10.1007/JHEP07(2022)065
[37] Wang, Y-T; Pan, W-B, Pole-skipping of holographic correlators: aspects of gauge symmetry and generalizations, JHEP, 01, 174 (2023) · Zbl 1540.81138
[38] D. Wang and Z.-Y. Wang, Pole Skipping in Holographic Theories with Bosonic Fields, Phys. Rev. Lett.129 (2022) 231603 [arXiv:2208.01047] [INSPIRE].
[39] Amano, MAG; Blake, M.; Cartwright, C.; Kaminski, M.; Thompson, AP, Chaos and pole-skipping in a simply spinning plasma, JHEP, 02, 253 (2023) · Zbl 1541.83035 · doi:10.1007/JHEP02(2023)253
[40] H. Yuan, X.-H. Ge, K.-Y. Kim, C.-W. Ji and Y. Ahn, Pole-skipping points in 2D gravity and SYK model, arXiv:2303.04801 [INSPIRE].
[41] B. Baishya and K. Nayek, Probing Pole Skipping through Scalar-Gauss-Bonnet coupling, arXiv:2301.03984 [INSPIRE].
[42] S. Grozdanov and M. Vrbica, Pole-skipping of gravitational waves in the backgrounds of four-dimensional massive black holes, arXiv:2303.15921 [INSPIRE].
[43] M. Natsuume and T. Okamura, Pole-skipping in a non-black-hole geometry, arXiv:2306.03930 [INSPIRE].
[44] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[45] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[46] D.A. Roberts and D. Stanford, Two-dimensional conformal field theory and the butterfly effect, Phys. Rev. Lett.115 (2015) 131603 [arXiv:1412.5123] [INSPIRE].
[47] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132 (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[48] Maldacena, J.; Shenker, SH; Stanford, D., A bound on chaos, JHEP, 08, 106 (2016) · Zbl 1390.81388 · doi:10.1007/JHEP08(2016)106
[49] Craps, B.; Khetrapal, S.; Rabideau, C., Chaos in CFT dual to rotating BTZ, JHEP, 11, 105 (2021) · Zbl 1521.83099 · doi:10.1007/JHEP11(2021)105
[50] Jahnke, V.; Kim, K-Y; Yoon, J., On the Chaos Bound in Rotating Black Holes, JHEP, 05, 037 (2019) · Zbl 1416.83055 · doi:10.1007/JHEP05(2019)037
[51] Banados, M.; Teitelboim, C.; Zanelli, J., The Black hole in three-dimensional space-time, Phys. Rev. Lett., 69, 1849 (1992) · Zbl 0968.83514 · doi:10.1103/PhysRevLett.69.1849
[52] M. Banados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D48 (1993) 1506 [gr-qc/9302012] [Erratum ibid.88 (2013) 069902] [INSPIRE].
[53] Iqbal, N.; Liu, H., Real-time response in AdS/CFT with application to spinors, Fortsch. Phys., 57, 367 (2009) · Zbl 1168.81390 · doi:10.1002/prop.200900057
[54] Das, S.; Dasgupta, A., Black hole emission rates and the AdS/CFT correspondence, JHEP, 10, 025 (1999) · Zbl 0955.83014 · doi:10.1088/1126-6708/1999/10/025
[55] D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.