×

Emerging Newtonian potential in pure \(R^2\) gravity on a de Sitter background. (English) Zbl 07749002

Summary: In [Fortschr. Phys. 64, No. 2–3, 176–189 (2016; Zbl 1339.83058)] L. Alvarez-Gaume et al. established that pure \(\mathcal{R}^2\) theory propagates massless spin-2 graviton on a de Sitter (dS) background but not on a locally flat background. We build on this insight to derive a Newtonian limit for the theory. Unlike most previous works that linearized the metric around a locally flat background, we explicitly employ the dS background to start with. We directly solve the field equation of the action \((2\kappa)^{-1}\int d^4x\sqrt{-g}\mathcal{R}^2\) coupled with the stress-energy tensor of normal matter in the form \(T_{\mu\nu} = Mc^2 \delta(\vec{r})\delta_\mu^0\delta_\nu^0\). We obtain the following Schwarzschild-de Sitter metric \(ds^2=-\left(1-\frac{\Lambda}{3}{r}^2-\frac{\kappa c^2}{48\pi \Lambda}\frac{M}{r}\right)c^2dt^2 + \left(1-\frac{\Lambda}{3}{r}^2-\frac{\kappa c^2}{48\pi \Lambda}\frac{M}{r}\right)^{-1}dr^2 + r^2d\varOmega^2\) which features a potential \(V(r) = -\frac{\kappa c^4}{96\pi\Lambda}\frac{M}{r}\) with the correct Newtonian tail. The parameter \(\Lambda\) plays a dual role: (i) it sets the scalar curvature for the background dS metric, and (ii) it partakes in the Newtonian potential \(V(r)\). We reach two key findings. Firstly, the Newtonian limit only emerges owing to the de Sitter background. Most existing studies of the Newtonian limit in modified gravity chose to linearize the metric around a locally flat background. However, this is a false vacuum to start with for pure \(\mathcal{R}^2\) gravity. These studies unknowingly omitted the information about \(\Lambda\) of the de Sitter background, hence incapable of attaining a Newtonian behavior in pure \(\mathcal{R}^2\) gravity. Secondly, as \(\Lambda\) appears in \(V(r)\) in a singular manner, viz. \(V(r) \propto \Lambda^{-1}\), the Newtonian limit for pure \(\mathcal{R}^2\) gravity cannot be obtained by any perturbative approach treating \(\Lambda\) as a small parameter.

MSC:

81-XX Quantum theory

Citations:

Zbl 1339.83058

References:

[1] R.P. Woodard, Avoiding dark energy with 1/r modifications of gravity, Lect. Notes Phys.720 (2007) 403 [astro-ph/0601672] [INSPIRE].
[2] Woodard, RP, Ostrogradsky’s theorem on Hamiltonian instability, Scholarpedia, 10, 32243 (2015) · doi:10.4249/scholarpedia.32243
[3] A. Edery and Y. Nakayama, Restricted Weyl invariance in four-dimensional curved spacetime, Phys. Rev. D90 (2014) 043007 [arXiv:1406.0060] [INSPIRE].
[4] Kehagias, A.; Kounnas, C.; Lüst, D.; Riotto, A., Black hole solutions in R^2gravity, JHEP, 05, 143 (2015) · Zbl 1388.83472 · doi:10.1007/JHEP05(2015)143
[5] V. Pravda, A. Pravdová, J. Podolský and R. Svarc, Exact solutions to quadratic gravity, Phys. Rev. D95 (2017) 084025 [arXiv:1606.02646] [INSPIRE].
[6] J. Podolský, R. Svarc, V. Pravda and A. Pravdová, Explicit black hole solutions in higher-derivative gravity, Phys. Rev. D98 (2018) 021502 [arXiv:1806.08209] [INSPIRE].
[7] M. Gürses, T.Ç. Şişman and B. Tekin, New exact solutions of quadratic curvature gravity, Phys. Rev. D86 (2012) 024009 [arXiv:1204.2215] [INSPIRE].
[8] Alvarez, E.; Anero, J.; Gonzalez-Martin, S.; Santos-Garcia, R., Physical content of quadratic gravity, Eur. Phys. J. C, 78, 794 (2018) · doi:10.1140/epjc/s10052-018-6250-x
[9] K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev. D16 (1977) 953 [INSPIRE].
[10] Stelle, KS, Classical gravity with higher derivatives, Gen. Rel. Grav., 9, 353 (1978) · doi:10.1007/BF00760427
[11] H. Lü, A. Perkins, C.N. Pope and K.S. Stelle, Black holes in higher-derivative gravity, Phys. Rev. Lett.114 (2015) 171601 [arXiv:1502.01028] [INSPIRE].
[12] H. Lü, A. Perkins, C.N. Pope and K.S. Stelle, Spherically symmetric solutions in higher-derivative gravity, Phys. Rev. D92 (2015) 124019 [arXiv:1508.00010] [INSPIRE].
[13] T. Clifton, Spherically symmetric solutions to fourth-order theories of gravity, Class. Quant. Grav.23 (2006) 7445 [gr-qc/0607096] [INSPIRE]. · Zbl 1107.83047
[14] Rinaldi, M., On the equivalence of Jordan and Einstein frames in scale-invariant gravity, Eur. Phys. J. Plus, 133, 408 (2018) · doi:10.1140/epjp/i2018-12213-9
[15] J.F. Donoghue and G. Menezes, Gauge assisted quadratic gravity: a framework for UV complete quantum gravity, Phys. Rev. D97 (2018) 126005 [arXiv:1804.04980] [INSPIRE].
[16] P.G. Ferreira and O.J. Tattersall, Scale invariant gravity and black hole ringdown, Phys. Rev. D101 (2020) 024011 [arXiv:1910.04480] [INSPIRE].
[17] V.P. Frolov and I.L. Shapiro, Black holes in higher dimensional gravity theory with quadratic in curvature corrections, Phys. Rev. D80 (2009) 044034 [arXiv:0907.1411] [INSPIRE].
[18] F. Duplessis and D.A. Easson, Traversable wormholes and non-singular black holes from the vacuum of quadratic gravity, Phys. Rev. D92 (2015) 043516 [arXiv:1506.00988] [INSPIRE].
[19] Dent, JB; Easson, DA; Kephart, TW; White, SC, Stability aspects of wormholes in R^2gravity, Int. J. Mod. Phys. D, 26, 1750117 (2017) · Zbl 1372.83057 · doi:10.1142/S0218271817501176
[20] S. Murk, Physical black holes in fourth-order gravity, Phys. Rev. D105 (2022) 044051 [arXiv:2110.14973] [INSPIRE].
[21] H.K. Nguyen, Beyond Schwarzschild-de Sitter spacetimes: a new exhaustive class of metrics inspired by Buchdahl for pure R^2gravity in a compact form, Phys. Rev. D106 (2022) 104004 [arXiv:2211.01769] [INSPIRE].
[22] H.K. Nguyen, Beyond Schwarzschild-de Sitter spacetimes. II. An exact non-Schwarzschild metric in pure R^2gravity and new anomalous properties of R^2spacetimes, Phys. Rev. D107 (2023) 104008 [arXiv:2211.03542] [INSPIRE].
[23] H.K. Nguyen, Beyond Schwarzschild-de Sitter spacetimes. III. A perturbative vacuum with nonconstant scalar curvature in R + R^2gravity, Phys. Rev. D107 (2023) 104009 [arXiv:2211.07380] [INSPIRE].
[24] Nguyen, HK; Azreg-Aïnou, M., Traversable Morris-Thorne-Buchdahl wormholes in quadratic gravity, Eur. Phys. J. C, 83, 626 (2023) · doi:10.1140/epjc/s10052-023-11805-3
[25] H.K. Nguyen, Non-triviality of asymptotically flat Buchdahl-inspired metrics in pure R^2gravity, arXiv:2305.12037 [INSPIRE].
[26] M. Azreg-Aïnou and H.K. Nguyen, A stationary axisymmetric vacuum solution for pure R^2gravity, arXiv:2304.08456 [INSPIRE].
[27] Alvarez-Gaume, L., Aspects of quadratic gravity, Fortsch. Phys., 64, 176 (2016) · Zbl 1339.83058 · doi:10.1002/prop.201500100
[28] P.D. Mannheim, Alternatives to dark matter and dark energy, Prog. Part. Nucl. Phys.56 (2006) 340 [astro-ph/0505266] [INSPIRE].
[29] O.V. Barabash and Y.V. Shtanov, Newtonian limit of conformal gravity, Phys. Rev. D60 (1999) 064008 [astro-ph/9904144] [INSPIRE].
[30] Barabash, OV; Pyatkovska, HP, Weak-field limit of conformal Weyl gravity, Ukr. J. Phys., 53, 737 (2008)
[31] S. Capozziello and A. Stabile, The Newtonian limit of metric gravity theories with quadratic Lagrangians, Class. Quant. Grav.26 (2009) 085019 [arXiv:0903.3238] [INSPIRE]. · Zbl 1163.83007
[32] S. Capozziello and A. Stabile, The weak field limit of fourth order gravity, arXiv:1009.3441 [INSPIRE].
[33] A. Stabile, The weak field limit of higher order gravity, Ph.D. thesis, Salerno U., Salerno, Italy (2008) [arXiv:0809.3570] [INSPIRE].
[34] Capozziello, S.; De Laurentis, M., Extended theories of gravity, Phys. Rept., 509, 167 (2011) · doi:10.1016/j.physrep.2011.09.003
[35] Nojiri, S.; Odintsov, SD, Modified gravity with ln R terms and cosmic acceleration, Gen. Rel. Grav., 36, 1765 (2004) · Zbl 1066.83017 · doi:10.1023/B:GERG.0000035950.40718.48
[36] T. Clifton and J.D. Barrow, The power of general relativity, Phys. Rev. D72 (2005) 103005 [Erratum ibid.90 (2014) 029902] [gr-qc/0509059] [INSPIRE].
[37] Araujo, A.; Lopez, DF; Pereira, JG, De Sitter invariant special relativity and galaxy rotation curves, Grav. Cosmol., 25, 157 (2019) · Zbl 1426.83003 · doi:10.1134/S0202289319020026
[38] Einhorn, MB; Jones, DRT, Grand unified theories in renormalisable, classically scale invariant gravity, JHEP, 10, 012 (2019) · Zbl 1427.83021 · doi:10.1007/JHEP10(2019)012
[39] Salvio, A.; Strumia, A., Agravity, JHEP, 06, 080 (2014) · Zbl 1333.83050 · doi:10.1007/JHEP06(2014)080
[40] M. Dunajski, Equivalence principle, de-Sitter space, and cosmological twistors, arXiv:2304.08574 [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.