×

An optimal computational method for a general class of nonlinear boundary value problems. (English) Zbl 07745946

Summary: This paper deals with the design and analysis of a robust numerical scheme based on an improvised quartic B-spline collocation (IQBSC) method for a class of nonlinear derivative dependent singular boundary value problems (DDSBVP). The convergence analysis of the method is studied by means of Green’s function approach. It should be pointed out that the numerical order of convergence of standard quartic B-spline collocation (SQBC) scheme for second-order boundary value problems (BVPs) is four, however, our proposed IQBSC method is shown to be sixth order convergence. To illustrate the applicability and accuracy of the method, we consider eight test problems. The obtained results are compared to those from some existing numerical schemes in order to show the advantage of present method. It is shown that the rate of convergence of present numerical scheme is higher than that of some of existing numerical methods. The CPU time of the present numerical method is provided.

MSC:

65Lxx Numerical methods for ordinary differential equations
34Bxx Boundary value problems for ordinary differential equations
92Cxx Physiological, cellular and medical topics
Full Text: DOI

References:

[1] Adam, JA, A simplified mathematical model of tumor growth, Math. Biosci., 81, 224-229 (1986) · Zbl 0601.92007 · doi:10.1016/0025-5564(86)90119-7
[2] Baxley, JV; Robinson, SB, Nonlinear boundary value problems for shallow membrane caps. II., J. Comput. Appl. Math., 88, 203-224 (1998) · Zbl 0928.74054 · doi:10.1016/S0377-0427(97)00216-1
[3] Bobisud, LE, Existence of solutions for nonlinear singular boundary value problems, Appl. Anal., 35, 43-57 (1990) · Zbl 0666.34017 · doi:10.1080/00036819008839903
[4] Caglar, H.; Caglar, N.; Ozer, M., B-spline solution of non-linear singular boundary value problems arising in physiology, Chaos Solitons Fract., 39, 1232-1237 (2009) · Zbl 1197.65107 · doi:10.1016/j.chaos.2007.06.007
[5] Chawla, MM; Mckee, S.; Shaw, G., Order \(h^2\) method for singular two-point boundary value problem, BIT, 26, 318-326 (1986) · Zbl 0602.65063 · doi:10.1007/BF01933711
[6] De Boor, C., A Practical Guide to Splines (1978), New York: Springer, New York · Zbl 0406.41003 · doi:10.1007/978-1-4612-6333-3
[7] Duggan, R.; Goodman, A., Pointwise bounds for a nonlinear heat conduction model of the human head, Bull. Math. Biol., 48, 229-236 (1986) · Zbl 0585.92011 · doi:10.1016/S0092-8240(86)80009-X
[8] Dunninger, DR; Kurtz, JC, Existence of solutions for some nonlinear singular boundary value problems, J. Math. Anal. Appl., 115, 396-405 (1986) · Zbl 0616.34012 · doi:10.1016/0022-247X(86)90003-X
[9] Fogler, HS, Elements of Chemical Reaction Engineering (1997), New Jersey: Prentice Hall-Hall Inc., New Jersey
[10] Gray, BF, The distribution of heat sources in the human head: a theoretical consideration, J. Theor. Biol., 82, 473-476 (1980) · doi:10.1016/0022-5193(80)90250-7
[11] J. Goh, A. Abd. Majid, A. I. Md. Ismail, A quartic B-spline for second-order singular boundary value problems. Comput. Math. Appl. 64, 115-120 (2012) · Zbl 1252.65134
[12] Hoskins, WD; Meek, DS, Linear dependence relations for polynomial splines at midknots, BIT, 15, 272-276 (1975) · Zbl 0311.65002 · doi:10.1007/BF01933659
[13] Iyengar, SRK; Jain, P., Spline finite difference methods for singular two point boundary value problems, Numer. Math., 50, 363-376 (1987) · Zbl 0642.65062 · doi:10.1007/BF01390712
[14] Kadalbajoo, MK; Kumar, V., B-spline method for a class of singular two-point boundary value problems using optimal grid, Appl. Maths. Comput., 188, 1856-1869 (2007) · Zbl 1119.65067 · doi:10.1016/j.amc.2006.11.050
[15] Khuri, SA; Sayfy, A., A mixed decomposition-spline approach for the numerical solution of a class of singular boundary value problems, Appl. Math. Model., 40, 4664-4680 (2016) · Zbl 1459.65115 · doi:10.1016/j.apm.2015.11.045
[16] Khuri, SA; Sayfy, A., A novel approach for the solution of a class of singular boundary value problems arising in physiology, Math. Comput. Model., 52, 626-636 (2010) · Zbl 1201.65135 · doi:10.1016/j.mcm.2010.04.009
[17] Kumar, M., A difference scheme based on non-uniform mesh for singular two-point boundary value problems, Appl. Math. Comput., 136, 281-288 (2003) · Zbl 1023.65076
[18] Lin, HS, Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics, J. Theor. Biol., 60, 449-457 (1976) · doi:10.1016/0022-5193(76)90071-0
[19] Lucas, TR, Error bound for interpolating cubic spline under various end conditions, SIAM J. Numer. Anal., 11, 569-584 (1974) · Zbl 0286.65004 · doi:10.1137/0711049
[20] Mastroberardino, A., Homotopy analysis method applied to Electro-hydrodynamic flow, Commun. Nonlinear. Sci. Numer. Simulat., 16, 2730-2736 (2011) · Zbl 1221.76151 · doi:10.1016/j.cnsns.2010.10.004
[21] Mckee, S.; Watson, R.; Cuminato, JA; Caldwell, J.; Chen, MS, Calculation of Electro-hydrodynamic flow in a circular cylindrical conduit, Z. Angew. Math. Mech., 77, 457-465 (1997) · Zbl 0900.73023 · doi:10.1002/zamm.19970770612
[22] Roul, P., A robust numerical technique and its analysis for computing the price of an Asian option, J. Comput. Appl. Math., 416 (2022) · Zbl 1492.91431 · doi:10.1016/j.cam.2022.114527
[23] Pandey, RK, A finite difference methods for a class of singular two point boundary value problems arising in physiology, Int. J. Comput. Math., 65, 131-140 (1997) · Zbl 0891.65095 · doi:10.1080/00207169708804603
[24] Pandey, RK, On the convergence of a finite difference method for a class of singular two point boundary value problems, Int. J. Comput. Math., 42, 237-241 (1992) · Zbl 0748.65065 · doi:10.1080/00207169208804065
[25] Pandey, RK, On the convergence of a spline method for singular two point boundary value problems arising in physiology, Int. J. Comput. Math., 79, 357-366 (2002) · Zbl 0995.65081 · doi:10.1080/00207160211935
[26] Pandey, RK; Singh, AK, On the convergence of a finite difference method for a class of singular boundary value problems arising in physiology, J. Comput. Appl. Math., 166, 553-564 (2004) · Zbl 1086.65083 · doi:10.1016/j.cam.2003.09.053
[27] Pandey, RK; Singh, AK, On the convergence of a fourth-order method for a class of singular boundary value problems, J. Comput. Appl. Maths., 224, 734-742 (2009) · Zbl 1188.65105 · doi:10.1016/j.cam.2008.06.005
[28] Pandey, RK; Verma, AK, On solvability of derivative dependent doubly singular boundary value problems, J. Appl. Math. Comput., 33, 489-511 (2010) · Zbl 1198.34028 · doi:10.1007/s12190-009-0299-5
[29] Prenter, PM, Splines and Variational Methods (1975), New York: Wiley, New York · Zbl 0344.65044
[30] Rachunkov, I.; Pulverer, G.; Weinmller, E., A unified approach to singular problems arising in the membrane theory, Appl. Math., 55, 47-75 (2010) · Zbl 1224.34072 · doi:10.1007/s10492-010-0002-z
[31] Rani, RU; Rajendran, L., Taylor’s series method for solving the nonlinear reaction-diffusion equation in the electroactive polymer film, Chem. Phys. Lett., 754 (2020) · doi:10.1016/j.cplett.2020.137573
[32] Rashidina, J.; Mahmoodi, Z.; Ghasemi, M., Parametric spline method for a class of singular two-point boundary value problems, Appl. Maths. Comput., 188, 58-63 (2007) · Zbl 1114.65341 · doi:10.1016/j.amc.2006.09.084
[33] Rashidinia, J.; Mohammadi, R.; Jalilian, R., Spline solution of non-linear singular boundary value problems, Int. J. Comput. Maths., 85, 39-52 (2008) · Zbl 1131.65065 · doi:10.1080/00207160701293048
[34] Ravi Kanth, ASV, Cubic spline polynomial for non-linear singular two-point boundary value problems, Appl. Math. Comput., 189, 2017-2022 (2007) · Zbl 1122.65376
[35] Ravikanth, ASV; Bhattacharya, V., Cubic spline for a class of nonlinear singular boundary-value problems arising in physiology, Appl. Math. Comput., 174, 768-774 (2006) · Zbl 1089.65075
[36] Ravi Kanth, ASV; Reddy, YN, Higher order finite difference method for a class of singular boundary value problems, Appl. Math. Comput., 155, 249-258 (2004) · Zbl 1058.65078
[37] Roul, P., A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151, 472-493 (2020) · Zbl 1437.91455 · doi:10.1016/j.apnum.2019.11.004
[38] Roul, P., Doubly singular boundary value problems with derivative dependent source function: a fast-converging iterative approach, Math. Methods Appl. Sci., 42, 354-374 (2019) · Zbl 1423.34025 · doi:10.1002/mma.5351
[39] Roul, P.; Biswal, D., A new numerical approach for solving a class of singular two-point boundary value problems, Numer. Algor., 75, 531-552 (2017) · Zbl 1385.65049 · doi:10.1007/s11075-016-0210-z
[40] Roul, P.; Goura, VMKP, B-spline collocation methods and their convergence for a class of nonlinear derivative dependent singular boundary value problems, Appl. Math. Comput., 341, 428-450 (2019) · Zbl 1429.65164
[41] Roul, P.; Prasad Goura, VMK; Agarwal, R., A compact finite difference method for a general class of nonlinear singular boundary value problems with Neumann and robin boundary conditions, Appl. Math. Comput., 350, 283-304 (2019) · Zbl 1429.65165
[42] Roul, P.; Thula, K., A fourth order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems, Int. J. Comput. Math., 96, 85-104 (2019) · Zbl 1499.65329 · doi:10.1080/00207160.2017.1417592
[43] Russell, RD; Shampine, LF, A collocation method for boundary value problems, Numer. Math., 19, 1-28 (1971) · Zbl 0221.65129 · doi:10.1007/BF01395926
[44] Roul, P.; Prasad Goura, VMK, A superconvergent B-spline technique for general class of nonlinear boundary value problems, Appl. Math. Comput., 414 (2022) · Zbl 1510.65159
[45] Singh, R.; Kumar, J., An efficient numerical technique for the solution of nonlinear singular boundary value problems, Comput. Phys. Comm., 185, 1282-1289 (2014) · Zbl 1344.65067 · doi:10.1016/j.cpc.2014.01.002
[46] Roul, P., Doubly singular boundary value problems with derivative dependent source function: a fast-converging iterative approach, Math. Methods Appl. Sci., 42, 1, 354-374 (2019) · Zbl 1423.34025 · doi:10.1002/mma.5351
[47] Thula, K.; Roul, P., A High-order B-Spline collocation method for solving nonlinear singular boundary value problems arising in engineering and applied science, Mediterr. J. Math., 15, 176 (2018) · Zbl 1432.65102 · doi:10.1007/s00009-018-1220-y
[48] Zhang, Y., A note on the solvability of singular boundary value problems, Nonlinear Anal. Theory Methods Appl., 26, 1605-1609 (1996) · Zbl 0853.34028 · doi:10.1016/0362-546X(95)00045-W
[49] Zhang, Y., Existence of solutions of a kind of singular boundary value problem, Nonlinear Anal. Theory Methods Appl., 21, 153-159 (1993) · Zbl 0790.34027 · doi:10.1016/0362-546X(93)90045-T
[50] Ozturk, Y.; Gulsu, M., An operational matrix method for solving Lane-Emden equations arising in astrophysics, Math. Methods Appl. Sci., 37, 2227-2235 (2014) · Zbl 1299.74181 · doi:10.1002/mma.2969
[51] Roul, P.; Goura, VMKP, A fast numerical scheme for solving singular boundary value problems arising in various physical models, J. Math. Chem. (2021) · Zbl 1492.65211 · doi:10.1007/s10910-021-01316-5
[52] Roul, P.; Kumari, T.; Goura, VMKP, An efficient numerical approach for solving a general class of nonlinear singular boundary value problems, J. Math. Chem., 59, 9, 1977-1993 (2021) · Zbl 1491.65070 · doi:10.1007/s10910-021-01279-7
[53] Roul, P.; Kumari, T., A quartic trigonometric B-spline collocation method for a general class of nonlinear singular boundary value problems, J. Math. Chem., 60, 1, 128-144 (2021) · Zbl 1482.92129 · doi:10.1007/s10910-021-01293-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.