×

Recent advances in decision support for beef and dairy farming: modeling approaches and opportunities. (English) Zbl 07745314

Summary: This paper surveys recent literature on decision support for beef and dairy farming, covering 110 articles published between 2016 and 2022. We classify these articles based on the type of farm, country of application, objectives and decisions, model scope, and methodology. The paper provides guidance for future research efforts by discussing the choice between whole farm and intrafarm modeling, the choice between optimization and simulation, and how to leverage existing modeling frameworks. Additionally, we identify opportunities for future research and discuss possibilities for increasing the adoption of decision-support tools in practice by farmers and industry advisors.
{© 2023 The Authors. International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation of Operational Research Societies}

MSC:

90-XX Operations research, mathematical programming

References:

[1] Addis, A., Blair, H., Kenyon, P., Morris, S., Schreurs, N., 2021a. Optimization of profit for pasture‐based beef cattle and sheep farming using linear programming: young beef cattle production in New Zealand. Agriculture11, 9.
[2] Addis, A.H., Blair, H.T., Kenyon, P.R., Morris, S.T., Schreurs, N.M., 2021b. Optimization of profit for pasture‐based beef cattle and sheep farming using linear programming: model development and evaluation. Agriculture11, 6, 524.
[3] Al‐Mamun, M., Grohn, Y., 2017. Mabsdairy: a multiscale agent based simulation of a dairy herd. Proceedings of the 50th Annual Simulation Symposium, Vol. 49, Virginia Beach, VA, pp. 82-93.
[4] Alary, V., Corbeels, M., Affholder, F., Alvarez, S., Soria, A., Valadares Xavier, J., daSilva, F., Scopel, E., 2016. Economic assessment of conservation agriculture options in mixed crop‐livestock systems in Brazil using farm modelling. Agricultural Systems144, 33-45.
[5] Aliloo, H., Pryce, J., González‐Recio, O., Cocks, B., Goddard, M., Hayes, B., 2017. Including nonadditive genetic effects in mating programs to maximize dairy farm profitability. Journal of Dairy Science100, 2, 1203-1222.
[6] Allison, J., Burdine, K., Dillon, C., Smith, S., Butler, D., Bates, G., Pighetti, G., 2021. Optimal forage and supplement balance for organic dairy farms in the Southeastern United States. Agricultural Systems189. https://doi.org/10.1016/j.agsy.2021.103048. · doi:10.1016/j.agsy.2021.103048
[7] Alqaisi, O., Moraes, L., Ndambi, O., Williams, R., 2019. Optimal dairy feed input selection under alternative feeds availability and relative prices. Information Processing in Agriculture6, 4, 438-453.
[8] Alqaisi, O., Schlecht, E., 2021. Feeding models to optimize dairy feed rations in view of feed availability, feed prices and milk production scenarios. Sustainability13, 1, 1-15.
[9] Amaruchkul, K., 2023. Multiobjective land-water allocation model for sustainable agriculture with predictive stochastic yield response. International Transactions in Operational Research30, 4, 1647-1672. · Zbl 07744718
[10] Anderson, W., Ridler, B., 2017. The effect of dairy farm intensification on farm operation, economics and risk: a marginal analysis. Animal Production Science57, 7, 1350-1356.
[11] Asamoah, J., Jin, Z., Sun, G.Q., Li, M., 2020. A deterministic model for Q fever transmission dynamics within dairy cattle herds: using sensitivity analysis and optimal controls. Computational and Mathematical Methods in Medicine2020. https://doi.org/10.1155/2020/6820608. · Zbl 1431.92129 · doi:10.1155/2020/6820608
[12] Asheim, L.J., Johnsen, J.F., Havrevoll, Ø., Mejdell, C.M., Grøndahl, A.M., 2016. The economic effects of suckling and milk feeding to calves in dual purpose dairy and beef farming. Review of Agricultural, Food and Environmental Studies97, 225-236.
[13] Barua, K., Akter, N., Alam, M., Bari, M., Sultan, M., Islam, S., Hossain, M., 2022. Effects of genotype, parity, season and their interactions on milk yield in crossbred dairy cattle. Journal of Animal Physiology and Animal Nutrition106, 6, 1216-1227.
[14] Basnet, S., Manevska‐Tasevska, G., Surry, Y., 2018. Explaining the process for conversion to organic dairy farming in Sweden: an alternative modelling approach. German Journal of Agricultural Economics67, 1, 14-30.
[15] Bellingeri, A., Gallo, A., Liang, D., Masoero, F., Cabrera, V., 2020. Development of a linear programming model for the optimal allocation of nutritional resources in a dairy herd. Journal of Dairy Science103, 11, 10898-10916.
[16] Bobbo, T., Biffani, S., Taccioli, C., Penasa, M., Cassandro, M., 2021. Comparison of machine learning methods to predict udder health status based on somatic cell counts in dairy cows. Scientific Reports11, 1.
[17] Bosona, T., Gebresenbet, G., 2021. Multipurpose simulation model for pasture‐based mobile automated milking and marketing system, part‐I: pasture, milk yield, and milk marketing characteristics. Computers and Electronics in Agriculture190. https://doi.org/10.1016/j.compag.2021.106212. · doi:10.1016/j.compag.2021.106212
[18] Breen, M., Upton, J., Murphy, M., 2019. Development of a discrete infrastructure optimization model for economic assessment on dairy farms (DIOMOND). Computers and Electronics in Agriculture156, 508-522.
[19] Breen, M., Upton, J., Murphy, M., 2020. Photovoltaic systems on dairy farms: Financial and renewable multi‐objective optimization (FARMOO) analysis. Applied Energy278. https://doi.org/10.1016/j.apenergy.2020.115534. · doi:10.1016/j.apenergy.2020.115534
[20] Bussoni, A., Cubbage, F., Alvarez Giambruno, J., 2021. Silvopastoral systems and multi‐criteria optimization for compatible economic and environmental outcomes. Agricultural Systems190. https://doi.org/10.1016/j.agsy.2021.103118. · doi:10.1016/j.agsy.2021.103118
[21] Calsamiglia, S., Astiz, S., Baucells, J., Castillejos, L., 2018. A stochastic dynamic model of a dairy farm to evaluate the technical and economic performance under different scenarios. Journal of Dairy Science101, 8, 7517-7530.
[22] Calvano, M., Brumatti, R., Barros, J., Garcia, M., Martins, K., Andreotti, R., 2021. Bioeconomic simulation of Rhipicephalus microplus infestation in different beef cattle production systems in the Brazilian Cerrado. Agricultural Systems194. https://doi.org/10.1016/j.agsy.2021.103247. · doi:10.1016/j.agsy.2021.103247
[23] Castelán‐Ortega, O., Martínez‐García, C., Mould, F., Dorward, P., Rehman, T., Rayas‐Amor, A., 2016. Optimal management of on‐farm resources in small‐scale dairy systems of Central Mexico: model development and evaluation. Tropical Animal Health and Production48, 5, 951-958.
[24] Cecchini, L., Pezzolla, D., Chiorri, M., Gigliotti, G., Torquati, B., 2022. Feeding management optimization in livestock farms with anaerobic digestion plant: a discrete stochastic programming (DSP) model. Environmental and Climate Technologies26, 1, 587-605.
[25] Cha, E., Smith, R., Kristensen, A., Hertl, J., Schukken, Y., Tauer, L., Welcome, F., Gröhn, Y., 2016. The value of pathogen information in treating clinical mastitis. Journal of Dairy Research83, 4, 456-463.
[26] Chiumenti, A., daBorso, F., Chiumenti, R., Kic, P., 2020. Applying a mathematical model to compare, choose, and optimize the management and economics of milking parlors in dairy farms. Agriculture10, 10, 1-9.
[27] Christie, K., Smith, A., Rawnsley, R., Harrison, M., Eckard, R., 2020. Simulated seasonal responses of grazed dairy pastures to nitrogen fertilizer in SE Australia: N loss and recovery. Agricultural Systems182. https://doi.org/10.1016/j.agsy.2020.102847. · doi:10.1016/j.agsy.2020.102847
[28] Correa‐Luna, M., Donaghy, D., Kemp, P., Shalloo, L., Ruelle, E., Hennessy, D., López‐Villalobos, N., 2021. Productivity, profitability and nitrogen utilisation efficiency of two pasture‐based milk production systems differing in the milking frequency and feeding level. Sustainability13, 4, 1-15.
[29] Cortez‐Arriola, J., Groot, J., Rossing, W., Scholberg, J., Améndola Massiotti, R., Tittonell, P., 2016. Alternative options for sustainable intensification of smallholder dairy farms in North‐West Michoacán, Mexico. Agricultural Systems144, 22-32.
[30] Dahl, M., De Vries, A., Galvão, K., Maunsell, F., Risco, C., Hernandez, J., 2020. Combined effect of mastitis and parity on pregnancy loss in lactating holstein cows. Theriogenology143, 57-63.
[31] DairyNutrient, 2019. N‐CyCLES. Available at https://kb.wisc.edu/dairynutrient/page.php?id=60349 (accessed 20 April 2023).
[32] Diakité, Z., Corson, M., Brunschwig, G., Baumont, R., Mosnier, C., 2019a. Profit stability of mixed dairy and beef production systems of the mountain area of southern Auvergne (France) in the face of price variations: bioeconomic simulation. Agricultural Systems171, 126-134.
[33] Diakité, Z., Mosnier, C., Baumont, R., Brunschwig, G., 2019b. Biotechnical and economic performance of mixed dairy cow‐suckler cattle herd systems in mountain areas: exploring the impact of herd proportions using the Orfee model. Livestock Science229, 105-113.
[34] Dolecheck, K., Overton, M., Mark, T., Bewley, J., 2019a. Estimating the value of infectious or noninfectious foot disorder prevention strategies within dairy farms, as influenced by foot disorder incidence rates and prevention effectiveness. Journal of Dairy Science102, 1, 731-741.
[35] Dolecheck, K., Overton, M., Mark, T., Bewley, J., 2019b. Use of a stochastic simulation model to estimate the cost per case of digital dermatitis, sole ulcer, and white line disease by parity group and incidence timing. Journal of Dairy Science102, 1, 715-730.
[36] Dominati, E., Maseyk, F., Mackay, A., Rendel, J., 2019. Farming in a changing environment: increasing biodiversity on farm for the supply of multiple ecosystem services. Science of the Total Environment662, 703-713.
[37] Doole, G.J., Romera, A.J., 2013. Detailed description of grazing systems using nonlinear optimisation methods: a model of a pasture‐based New Zealand dairy farm. Agricultural Systems122, 33-41.
[38] Dunne, F., Kelleher, M., Walsh, S., Berry, D., 2018. Characterization of best linear unbiased estimates generated from national genetic evaluations of reproductive performance, survival, and milk yield in dairy cows. Journal of Dairy Science101, 8, 7625-7637.
[39] Edwardes, F., van derVoort, M., Halasa, T., Holzhauer, M., Hogeveen, H., 2022. Simulating the mechanics behind sub‐optimal mobility and the associated economic losses in dairy production. Preventive Veterinary Medicine199. https://doi.org/10.1016/j.prevetmed.2021.105551. · doi:10.1016/j.prevetmed.2021.105551
[40] Ekine‐Dzivenu, C., Mrode, R., Oyieng, E., Komwihangilo, D., Lyatuu, E., Msuta, G., Ojango, J., Okeyo, A., 2020. Evaluating the impact of heat stress as measured by temperature‐humidity index (THI) on test‐day milk yield of small holder dairy cattle in a sub‐Sahara African climate. Livestock Science242. https://doi.org/10.1016/j.livsci.2020.104314. · doi:10.1016/j.livsci.2020.104314
[41] EMASG, 2023. FarmDyn. Available at https://farmdyn.github.io/documentation (accessed 20 April 2023).
[42] Farrell, L., Morris, S., Kenyon, P., Tozer, P., 2022. Simulating use of terminal sires in a self‐replacing beef suckler herd with varying weaning rate, calf sale policies, and price premiums. Livestock Science260. https://doi.org/10.1016/j.livsci.2022.104906. · doi:10.1016/j.livsci.2022.104906
[43] Ferchiou, A., Lhermie, G., Raboisson, D., 2021. New standards in stochastic simulations of dairy cow disease modelling: bio‐economic dynamic optimization for rational health management decision‐making. Agricultural Systems194. https://doi.org/10.1016/j.agsy.2021.103249. · doi:10.1016/j.agsy.2021.103249
[44] Ferris, M., Christensen, A., Wangen, S., 2020. Symposium review: dairy brain informing decisions on dairy farms using data analytics. Journal of Dairy Science103, 4, 3874-3881.
[45] Flaten, O., Bakken, A.K., Lindås, A., Steinshamn, H., 2019a. Forage production strategies for improved profitability in organic dairy production at high latitudes. Livestock Science223, 97-107.
[46] Flaten, O., Koesling, M., Hansen, S., Veidal, A., 2019b. Links between profitability, nitrogen surplus, greenhouse gas emissions, and energy intensity on organic and conventional dairy farms. Agroecology and Sustainable Food Systems43, 9, 957-983.
[47] Fountain, J., Brookes, V., Kirkeby, C., Manyweathers, J., Maru, Y., Hernandez‐Jover, M., 2022. One size does not fit all: Exploring the economic and non‐economic outcomes of on‐farm biosecurity for bovine viral diarrhoea virus in Australian beef production. Preventive Veterinary Medicine208. https://dx.doi.org/10.2139/ssrn.4088258. · doi:10.2139/ssrn.4088258
[48] Fournel, S., Charbonneau, E., Binggeli, S., Dion, J.M., Pellerin, D., Chantigny, M., Godbout, S., 2018. Determining environmental benefits and economic costs of different manure handling strategies in Quebec’s dairy production using farm simulation. 10th International Livestock Environment Symposium (ILES X). American Society of Agricultural and Biological Engineers, St. Joseph, MI.
[49] Gameiro, A., Rocco, C., Caixeta Filho, J., 2016. Linear programming in the economic estimate of livestock‐crop integration: application to a Brazilian dairy farm. Revista Brasileira de Zootecnia45, 4, 181-189.
[50] Gargiulo, J., Lyons, N., Clark, C., Garcia, S., 2022. The AMS integrated management model: a decision‐support system for automatic milking systems. Computers and Electronics in Agriculture196. https://doi.org/10.1016/j.compag.2022.106904. · doi:10.1016/j.compag.2022.106904
[51] Gaworski, M., Kaminska, N., Kic, P., 2017. Evaluation and optimization of milking in some Polish dairy farms differed in milking parlours. Agronomy Research15, 1, 112-122.
[52] Gaworski, M., Kic, P., 2017. Improvement of mobile milking parlours in small dairy farms including technical and functional aspects. Proceedings of the 16th International Scientific Conference Engineering for Rural Development, Vol. 16, May 24-26, Jelgava, Latvia, pp. 402-407.
[53] Getaneh, A., Mekonnen, S., Hogeveen, H., 2017. Stochastic bioeeconomic modeling of mastitis in Ethiopian dairy farms. Preventive Veterinary Medicine138, 94-103.
[54] Giampieri, F., Mazzoni, L., Cianciosi, D., Alvarez‐Suarez, J.M., Regolo, L., Sánchez‐González, C., Capocasa, F., Xiao, J., Mezzetti, B., Battino, M., 2022. Organic vs conventional plant‐based foods: A review. Food Chemistry383. https://doi.org/10.1016/j.foodchem.2022.132352. · doi:10.1016/j.foodchem.2022.132352
[55] González, X.I., Bert, F., Podestá, G., 2023. Many objective robust decision‐making model for agriculture decisions (MORDMAgro). International Transactions in Operational Research30, 4, 1617-1646. · Zbl 07744717
[56] Gorczyca, M., Gebremedhin, K., 2020. Ranking of environmental heat stressors for dairy cows using machine learning algorithms. Computers and Electronics in Agriculture168. https://doi.org/10.1016/j.compag.2019.105124. · doi:10.1016/j.compag.2019.105124
[57] Gorlov, I., Slozhenkina, M., Shakhbazova, O., Gubareva, V., Zlobina, E., Karpenko, E., 2016. Optimization of feed acreages structure in unstable moistening zone. Asian Journal of Agricultural Research10, 3-4, 154-161.
[58] Gregorini, P., Beukes, P., Dalley, D., Romera, A., 2016. Screening for diets that reduce urinary nitrogen excretion and methane emissions while maintaining or increasing production by dairy cows. Science of the Total Environment551-552, 32-41.
[59] Gregorini, P., Galli, J., Romera, A., Levy, G., Macdonald, K., Fernandez, H., Beukes, P., 2014. Incorporating a prediction of postgrazing herbage mass into a whole‐farm model for pasture‐based dairy systems. Journal of Dairy Science97, 7, 4354-4366.
[60] Groot, J.C., Oomen, G.J., Rossing, W.A., 2012. Multi‐objective optimization and design of farming systems. Agricultural Systems110, 63-77.
[61] Gülzari, Ş., Vosough Ahmadi, B., Stott, A., 2018. Impact of subclinical mastitis on greenhouse gas emissions intensity and profitability of dairy cows in Norway. Preventive Veterinary Medicine150, 19-29.
[62] GVR, 2022. Beef market size, share & trends analysis report, 2030. Available at https://www.grandviewresearch.com/industry‐analysis/beef‐market‐analysis (accessed 20 April 2023).
[63] Haapala, V., Vähänikkilä, N., Kulkas, L., Tuunainen, E., Pohjanvirta, T., Autio, T., Pelkonen, S., Soveri, T., Simojoki, H., 2021. Mycoplasma bovis infection in dairy herds-risk factors and effect of control measures. Journal of Dairy Science104, 2, 2254-2265.
[64] Han, J.H., Weston, J., Heuer, C., Gates, M., 2020. Modelling the economics of bovine viral diarrhoea virus control in pastoral dairy and beef cattle herds. Preventive Veterinary Medicine182. https://doi.org/10.1016/j.prevetmed.2020.105092. · doi:10.1016/j.prevetmed.2020.105092
[65] Hansen, B.G., Haga, H., Lindblad, K.B., 2021. Revenue efficiency, profitability, and profitability potential on organic versus conventional dairy farms—results from comparable groups of farms. Organic Agriculture11, 3, 351-365.
[66] Hansen, B.G., Langseth, E., Berge, C., 2023. Animal welfare and cow-calf contact‐farmers’ attitudes, experiences and adoption barriers. Journal of Rural Studies97, 34-46.
[67] Hlavatý, R., Krejcí, I., Houška, M., Moulis, P., Rydval, J., Pitrová, J., Pilař, L., Horáková, T., Tichá, I., 2023. Understanding the decision‐making in small‐scale beef cattle herd management through a mathematical programming model. International Transactions in Operational Research30, 4, 1955-1985. · Zbl 07744729
[68] Hyde, R., Green, M., Hudson, C., Down, P., 2021. Factors associated with daily weight gain in preweaned calves on dairy farms. Preventive Veterinary Medicine190. https://doi.org/10.1016/j.prevetmed.2021.105320. · doi:10.1016/j.prevetmed.2021.105320
[69] IMARC, 2022. Global dairy market: industry trends, share, size, growth, opportunity and forecast 2023-2028. Available at https://www.imarcgroup.com/global‐dairy‐market (accessed 20 April 2023).
[70] Islam, S., Barua, S., Moni, S., Islam, A., Rahman, A., Chowdhury, S., 2021. Seroprevalence and risk factors for bovine brucellosis in the Chittagong Metropolitan Area of Bangladesh. Veterinary Medicine and Science7, 1, 86-98.
[71] Kic, P., Aboltins, A., Priekulis, J., 2016. Optimization of choosing and evaluation of milking parlours for dairy farms in Latvia. Proceedings of the International Scientific Conference, Vol. 2016, Guangzhou, China, pp. 31-36.
[72] Kimura, Y., Suzuki, T., Yaasui, S., Ishii, K., Kaziyama, T., Oishi, K., Ogino, A., Hinata, T., Hirooka, H., Osada, T., Fujita, H., 2020. Simulation of livestock biomass resource recycling and energy utilization model based on dry type methane fermentation system. International Conference of Biomass and Bioenergy, Vol. 460, August 19-20, West Java, Indonesia.
[73] Kipling, R.P., Topp, C.F., Bannink, A., Bartley, D.J., Blanco‐Penedo, I., Cortignani, R., delPrado, A., Dono, G., Faverdin, P., Graux, A.I., Hutchings, N.J., Lauwers, L., Özkan, G., Reidsma, P., Rolinski, S., Ruiz‐Ramos, M., Sandars, D.L., Sándor, R., Schönhart, M., Seddaiu, G., vanMiddelkoop, J., Shrestha, S., Weindl, I., Eory, V., 2019. To what extent is climate change adaptation a novel challenge for agricultural modellers?Environmental Modelling & Software120. https://doi.org/10.1016/j.envsoft.2019.104492. · doi:10.1016/j.envsoft.2019.104492
[74] Kleftodimos, G., Kyrgiakos, L., Kleisiari, C., Tagarakis, A., Bochtis, D., 2022. Examining farmers’ adoption decisions towards precision‐agricultural practices in Greek dairy cattle farms. Sustainability14, 1.
[75] Klootwijk, C., Van Middelaar, C., Berentsen, P., deBoer, I., 2016. Dutch dairy farms after milk quota abolition: economic and environmental consequences of a new manure policy. Journal of Dairy Science99, 10, 8384-8396.
[76] Kok, A., Van Middelaar, C., Mostert, P., Van Knegsel, A., Kemp, B., De Boer, I., Hogeveen, H., 2017. Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd: a dynamic stochastic simulation model. PLoS ONE12, 10.
[77] Kokemohr, L., Escobar, N., Mertens, A., Mosnier, C., Pirlo, G., Veysset, P., Kuhn, T., 2022. Life cycle sustainability assessment of European beef production systems based on a farm‐level optimization model. Journal of Cleaner Production379. https://doi.org/10.1016/j.jclepro.2022.134552. · doi:10.1016/j.jclepro.2022.134552
[78] Kuhn, T., Schäfer, D., Holm‐Müller, K., Britz, W., 2019. On‐farm compliance costs with the eu‐nitrates directive: a modelling approach for specialized livestock production in Northwest Germany. Agricultural Systems173, 233-243.
[79] Laurenson, S., van derWeerden, T., Beukes, P., Vogeler, I., 2017. Evaluating the economic and production benefit of removing dairy cows from pastures in response to wet soil conditions. New Zealand Journal of Agricultural Research60, 3, 223-244.
[80] Liang, Y., Wai Hui, C., You, F., 2018. Multi‐objective economic‐resource‐production optimization of sustainable organic mixed farming systems with nutrient recycling. Journal of Cleaner Production196, 304-330.
[81] Lindblom, J., Lundström, C., Ljung, M., Jonsson, A., 2017. Promoting sustainable intensification in precision agriculture: review of decision support systems development and strategies. Precision Agriculture18, 309-331.
[82] March, M., Shalloo, L., Roberts, D., Ryan, W., 2017. Financial evaluation of Holstein Friesian strains within composite and housed UK dairy systems. Livestock Science200, 14-22.
[83] Marques, J., deOliveira Silva, R., Barioni, L., Hall, J., Fossaert, C., Tedeschi, L., Garcia‐Launay, F., Moran, D., 2022. Evaluating environmental and economic trade‐offs in cattle feed strategies using multiobjective optimization. Agricultural Systems195. https://doi.org/10.1016/j.agsy.2021.103308. · doi:10.1016/j.agsy.2021.103308
[84] Mejia, S., Hassan, A., 2016. Determining the optimal selling time of cattle: a stochastic dynamic programming approach. Agricultural Economics62, 11, 517-527.
[85] Mosnier, C., Duclos, A., Agabriel, J., Gac, A., 2017. Orfee: a bio‐economic model to simulate integrated and intensive management of mixed crop‐livestock farms and their greenhouse gas emissions. Agricultural Systems157, 202-215.
[86] Notte, G., Cancela, H., Pedemonte, M., Chilibroste, P., Rossing, W., Groot, J.C., 2020. A multi‐objective optimization model for dairy feeding management. Agricultural Systems183. https://doi.org/10.1016/j.agsy.2020.102854. · doi:10.1016/j.agsy.2020.102854
[87] Notte, G., Pedemonte, M., Cancela, H., Chilibroste, P., 2016. Resource allocation in pastoral dairy production systems: evaluating exact and genetic algorithms approaches. Agricultural Systems148, 114-123.
[88] OECD/FAO, 2021. OECD‐FAO agricultural outlook 2021-2030. Available at https://www.oecd.org/publications/oecd‐fao‐agricultural‐outlook‐19991142.htm.
[89] Orhan, C.C., Guajardo, M., 2022. Analytics in developing countries: methods, applications, and the impact on the UN sustainable development goals. International Transactions in Operational Research29, 4, 2041-2081. · Zbl 07771135
[90] Ouellet, V., Tremblay, G., Laroche, J., Bélanger, G., Binggeli, S., Jégo, G., Charbonneau, E., 2021. Modeling whole farm profitability and environmental performance of four alfalfa‐grass binary mixtures in eastern Canadian dairy farms. Agronomy Journal113, 5, 4047-4063.
[91] Pattamanont, P., De Vries, A., 2021. Effects of limits in milking capacity, housing capacity, or fat quota on economic optimization of dry period lengths. Journal of Dairy Science104, 11, 11715-11737.
[92] Paul, B., Groot, J., Birnholz, C., Nzogela, B., Notenbaert, A., Woyessa, K., Sommer, R., Nijbroek, R., Tittonell, P., 2020. Reducing agro‐environmental trade‐offs through sustainable livestock intensification across smallholder systems in Northern Tanzania. International Journal of Agricultural Sustainability18, 1, 35-54.
[93] Pavkin, D., Shilin, D., Nikitin, E., Kiryushin, I., 2021. Designing and simulating the control process of a feed pusher robot used on a dairy farm. Applied Sciences11, 22.
[94] Pečnik, Ž., Žgajnar, J., 2022. Resilience of dairy farms measured through production plan adjustments [odpornost kmetij s prirejo mleka z različnimi prilagoditvami proizvodnega načrta]. Journal of Central European Agriculture23, 1, 207-219.
[95] Pellerin, D., Charbonneau, E., Fadul‐Pacheco, L., Soucy, O., Wattiaux, M., 2017. Economic effect of reducing nitrogen and phosphorus mass balance on Wisconsin and Québec dairy farms. Journal of Dairy Science100, 10, 8614-8629.
[96] Põldaru, R., Luik‐Lindsaar, H., 2020. The impact of herd health on the efficiency of dairy farms. Agronomy Research18, Special Issue 2, 1404-1417.
[97] Popp, M., Ashworth, A., West, C., 2021. Simulating the feasibility of dual use switchgrass on cow-calf operations. Energies14, 9.
[98] Prisenk, J., Turk, J., Pazek, K., 2016. Multi‐goal optimization process for formulation of daily dairy cow rations on organic farms: a Slovenian case study. Animal Nutrition and Feed Technology16, 1, 13-24.
[99] Quintero‐Herrera, S., García‐León, A., Botello‐Álvarez, J., Estrada‐Baltazar, A., Abel‐Seabra, J., Padilla‐Rivera, A., Rivas‐García, P., 2021. The use of broccoli agro‐industrial waste in dairy cattle diet for environmental mitigation. Cleaner Environmental Systems2. https://doi.org/10.1016/j.cesys.2021.100035. · doi:10.1016/j.cesys.2021.100035
[100] Quintero‐Herrera, S., Zwolinski, P., Evrard, D., Cano‐Gómez, J., Botello‐Álvarez, J., Rivas‐García, P., 2022. The role of livestock feed fertilization as an improvement of sustainability in the dairy sector. Sustainable Production and Consumption31, 448-458.
[101] Raboisson, D., Lhermie, G., Minviel, J., Lesueur, J., Ferchiou, A., 2019. The need for new bio‐economic modelling approaches in precision livestock farming. Ecological Engineering174, 820-826.
[102] Reidsma, P., Janssen, S., Jansen, J., vanIttersum, M.K., 2018. On the development and use of farm models for policy impact assessment in the European Union—a review. Agricultural systems159, 111-125.
[103] Rendel, J., Mackay, A., Smale, P., Manderson, A., Scobie, D., 2020. Optimisation of the resource of land‐based livestock systems to advance sustainable agriculture: a farm‐level analysis. Agriculture10, 8, 1-23.
[104] Rojas‐Downing, M., Nejadhashemi, A., Elahi, B., Cassida, K., Daneshvar, F., Hernandez‐Suarez, J., Abouali, M., Herman, M., Dawood Al Masraf, S., Harrigan, T., 2018. Food footprint as a measure of sustainability for grazing dairy farms. Environmental Management62, 6, 1073-1088.
[105] Romera, A., Doole, G., 2016. Integrated analysis of profitable stocking‐rate decisions in pasture‐based dairy systems. Grass and Forage Science71, 1, 90-101.
[106] Rose, D.C., Sutherland, W.J., Parker, C., Lobley, M., Winter, M., Morris, C., Twining, S., Ffoulkes, C., Amano, T., Dicks, L.V., 2016. Decision support tools for agriculture: towards effective design and delivery. Agricultural systems149, 165-174.
[107] Ruelle, E., Delaby, L., Wallace, M., Shalloo, L., 2018. Using models to establish the financially optimum strategy for Irish dairy farms. Journal of Dairy Science101, 1, 614-623.
[108] Ruelle, E., Shalloo, L., Butler, S., 2021. Economic impact of different strategies to use sex‐sorted sperm for reproductive management in seasonal‐calving, pasture‐based dairy herds. Journal of Dairy Science104, 11, 11747-11758.
[109] Ruelle, E., Shalloo, L., Wallace, M., Delaby, L., 2015. Development and evaluation of the pasture‐based herd dynamic milk (PBHDM) model for dairy systems. European Journal of Agronomy71, 106-114.
[110] Rutten, C., Steeneveld, W., Vernooij, J., Huijps, K., Nielen, M., Hogeveen, H., 2016. A prognostic model to predict the success of artificial insemination in dairy cows based on readily available data. Journal of Dairy Science99, 8, 6764-6779.
[111] Sada, O., Leola, A., Kic, P., 2016. Choosing and evaluation of milking parlours for dairy farms in Estonia. Agronomy Research14, 5, 1694-1701.
[112] Salfer, J., Minegishi, K., Lazarus, W., Berning, E., Endres, M., 2017. Finances and returns for robotic dairies. Journal of Dairy Science100, 9, 7739-7749.
[113] Salinas‐Martínez, J., Posadas‐Domínguez, R., Morales‐Díaz, L., Rebollar‐Rebollar, S., Rojo‐Rubio, R., 2020. Cost analysis and economic optimization of small‐scale dairy production systems in Mexico. Livestock Science237. https://doi.org/10.1016/j.livsci.2020.104028. · doi:10.1016/j.livsci.2020.104028
[114] Sayers, R., 2017. Associations between exposure to bovine herpesvirus 1 (BoHV‐1) and milk production, reproductive performance, and mortality in Irish dairy herds. Journal of Dairy Science100, 2, 1340-1352.
[115] Sekiya, T., Yamaguchi, S., Iwasa, Y., 2020. Bovine mastitis and optimal disease management: dynamic programming analysis. Journal of Theoretical Biology498. https://doi.org/10.1016/j.jtbi.2020.110292. · Zbl 1455.92089 · doi:10.1016/j.jtbi.2020.110292
[116] Shalloo, L., Dillon, P., Rath, M., Wallace, M., 2004. Description and validation of the Moorepark dairy system model. Journal of Dairy Science87, 6, 1945-1959.
[117] Shrestha, S., Ahmadi, B., Barratt, A., Thomson, S., Stott, A., 2018. Financial vulnerability of dairy farms challenged by Johne’s disease to changes in farm payment support. Frontiers in Veterinary Science5, 316.
[118] Shrestha, S., Barratt, A., Fox, N., Vosough Ahmadi, B., Hutchings, M., 2020. Financial impacts of liver fluke on livestock farms under climate change—a farm level assessment. Frontiers in Veterinary Science7. https://doi.org/10.3389/fvets.2020.564795. · doi:10.3389/fvets.2020.564795
[119] Singh, J., Banerjie, J., 2021. Optimum farming plans for marginal farmers without restriction on livestock enterprises using linear programming model. International Journal of Agricultural and Statistical Sciences17, 2, 747-753.
[120] Snow, V., Knowles, I., Fraser, T., McIvor, S., Lovatt, S., Dooley, A., Finlayson, J., 2020. The & M&WNZ Foragemaster: decision support for forage selection, pp. 259-265. Available at https://www.mssanz.org.au/modsim05/papers/snow.pdf.
[121] SRUC, 2023. ScotFarm. Avaialble at https://pure.sruc.ac.uk/en/publications/scotfarm‐a‐farm‐level‐optimising‐model (accessed 20 April 2023).
[122] Taifouris, M., Martin, M., 2021. Toward a circular economy approach for integrated intensive livestock and cropping systems. ACS Sustainable Chemistry and Engineering9, 40, 13471-13479.
[123] Taylor, J., Stanko, R., Rhoades, R., McCuistion, K., Mathis, C., Machen, R., Turner, B., 2022. Can early weaning calves of first‐calf heifers improve long‐term herd and financial performance in a vertically integrated beef production system? A study application using system dynamics. Applied Animal Science38, 2, 183-199.
[124] Telldahl, C., Hansson, H., Emanuelson, U., 2019. Modelling animal health as a production factor in dairy production—a case of low somatic cell counts in Swedish dairy agriculture. Livestock Science230. https://doi.org/10.1016/j.livsci.2019.103840. · doi:10.1016/j.livsci.2019.103840
[125] Trejo‐Pech, C., Bruhin, J., Boyer, C., Smith, S., 2022. Profitability, risk and cash flow deficit for beginning cow-calf producers. Agricultural Finance Review82, 1, 1-19.
[126] Troendle, J., Tauer, L., Gröhn, Y., 2017. Optimally achieving milk bulk tank somatic cell count thresholds. Journal of Dairy Science100, 1, 731-738.
[127] USDA, 2020. IFSM. Available at https://www.ars.usda.gov/northeast‐area/up‐pa/pswmru/docs/integrated‐farm‐system‐model/ (accessed 20 April 2023).
[128] van derVoort, M., Van Meensel, J., Lauwers, L., deHaan, M., Evers, A., Van Huylenbroeck, G., Charlier, J., 2017. Economic modelling of grazing management against gastrointestinal nematodes in dairy cattle. Veterinary Parasitology236, 68-75.
[129] Wang, L., Li, M., Pei, X., Zhang, J., 2022. Optimal breeding strategy for livestock with a dynamic price. Mathematics10, 10.
[130] White, R., 2016. Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production. Agricultural Systems146, 20-29.
[131] Worden, D., Hailu, G., 2020. Do genomic innovations enable an economic and environmental win‐win in dairy production?Agricultural Systems181. https://www.sciencedirect.com/science/article/pii/S0308521X19304755.
[132] Zhao, K., Huang, G., Luo, B., Wu, Y., 2022. A factorial interval chance‐constrained diet model for dairy farms under climate change: a case study for the Province of Saskatchewan, Canada. Journal of Cleaner Production360. https://doi.org/10.1016/j.jclepro.2022.132059. · doi:10.1016/j.jclepro.2022.132059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.