×

Holographic thermal correlators: a tale of Fuchsian ODEs and integration contours. (English) Zbl 07744153

Summary: We analyze real-time thermal correlation functions of conserved currents in holographic field theories using the grSK geometry, which provides a contour prescription for their evaluation. We demonstrate its efficacy, arguing that there are situations involving components of conserved currents, or derivative interactions, where such a prescription is, in fact, essential. To this end, we first undertake a careful analysis of the linearized wave equations in AdS black hole backgrounds and identify the branch points of the solutions as a function of (complexified) frequency and momentum. All the equations we study are Fuchsian with only regular singular points that for the most part are associated with the geometric features of the background. Special features, e.g., the appearance of apparent singular points at the horizon, whence outgoing solutions end up being analytic, arise at higher codimension loci in parameter space. Using the grSK geometry, we demonstrate that these apparent singularities do not correspond to any interesting physical features in higher-point functions. We also argue that the Schwinger-Keldysh collapse and KMS conditions, implemented by the grSK geometry, continue to hold even in the presence of such singularities. For charged black holes above a critical charge, we furthermore demonstrate that the energy density operator does not possess an exponentially growing mode, associated with ‘pole-skipping’, from one such apparent singularity. Our analysis suggests that the connection between the scrambling physics of black holes and energy transport has, at best, a limited domain of validity.

MSC:

81-XX Quantum theory

References:

[1] C.V. Vishveshwara, Stability of the schwarzschild metric, Phys. Rev. D1 (1970) 2870 [INSPIRE].
[2] W.H. Press, Long Wave Trains of Gravitational Waves from a Vibrating Black Hole, Astrophys. J. Lett.170 (1971) L105 [INSPIRE].
[3] Horowitz, GT; Hubeny, VE, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D, 62 (2000) · doi:10.1103/PhysRevD.62.024027
[4] K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel.2 (1999) 2 [gr-qc/9909058] [INSPIRE]. · Zbl 0984.83002
[5] Berti, E.; Cardoso, V.; Starinets, AO, Quasinormal modes of black holes and black branes, Class. Quant. Grav., 26 (2009) · Zbl 1173.83001 · doi:10.1088/0264-9381/26/16/163001
[6] Hatsuda, Y.; Kimura, M., Spectral Problems for Quasinormal Modes of Black Holes, Universe, 7, 476 (2021) · doi:10.3390/universe7120476
[7] P. Glorioso, M. Crossley and H. Liu, A prescription for holographic Schwinger-Keldysh contour in non-equilibrium systems, arXiv:1812.08785 [INSPIRE].
[8] Chakrabarty, B., Nonlinear Langevin dynamics via holography, JHEP, 01, 165 (2020) · doi:10.1007/JHEP01(2020)165
[9] Jana, C.; Loganayagam, R.; Rangamani, M., Open quantum systems and Schwinger-Keldysh holograms, JHEP, 07, 242 (2020) · Zbl 1451.83042 · doi:10.1007/JHEP07(2020)242
[10] Loganayagam, R.; Rangamani, M.; Virrueta, J., Holographic open quantum systems: toy models and analytic properties of thermal correlators, JHEP, 03, 153 (2023) · Zbl 07690717 · doi:10.1007/JHEP03(2023)153
[11] Son, DT; Starinets, AO, Minkowski space correlators in AdS / CFT correspondence: Recipe and applications, JHEP, 09, 042 (2002) · doi:10.1088/1126-6708/2002/09/042
[12] Herzog, CP; Son, DT, Schwinger-Keldysh propagators from AdS/CFT correspondence, JHEP, 03, 046 (2003) · doi:10.1088/1126-6708/2003/03/046
[13] Skenderis, K.; van Rees, BC, Real-time gauge/gravity duality, Phys. Rev. Lett., 101 (2008) · Zbl 1228.81244 · doi:10.1103/PhysRevLett.101.081601
[14] K. Skenderis and B.C. van Rees, Real-time gauge/gravity duality: Prescription, Renormalization and Examples, JHEP05 (2009) 085 [arXiv:0812.2909] [INSPIRE].
[15] B.C. van Rees, Real-time gauge/gravity duality and ingoing boundary conditions, Nucl. Phys. B Proc. Suppl.192-193 (2009) 193 [arXiv:0902.4010] [INSPIRE].
[16] Arnold, P.; Vaman, D.; Wu, C.; Xiao, W., Second order hydrodynamic coefficients from 3-point stress tensor correlators via AdS/CFT, JHEP, 10, 033 (2011) · Zbl 1303.76144
[17] Arnold, P.; Vaman, D., 4-point correlators in finite-temperature AdS/CFT: Jet quenching correlations, JHEP, 11, 033 (2011) · Zbl 1306.81324
[18] Botta-Cantcheff, M.; Martínez, P.; Silva, GA, On excited states in real-time AdS/CFT, JHEP, 02, 171 (2016) · Zbl 1388.83188 · doi:10.1007/JHEP02(2016)171
[19] Botta-Cantcheff, M.; Martínez, PJ; Silva, GA, Interacting fields in real-time AdS/CFT, JHEP, 03, 148 (2017) · Zbl 1377.81157 · doi:10.1007/JHEP03(2017)148
[20] Pantelidou, C.; Withers, B., Thermal three-point functions from holographic Schwinger-Keldysh contours, JHEP, 04, 050 (2023) · Zbl 07693938 · doi:10.1007/JHEP04(2023)050
[21] R. Loganayagam and G. Martin, An open eft for hawking radiation, to appear.
[22] Blake, M.; Lee, H.; Liu, H., A quantum hydrodynamical description for scrambling and many-body chaos, JHEP, 10, 127 (2018) · Zbl 1402.81163 · doi:10.1007/JHEP10(2018)127
[23] Haehl, FM; Rozali, M., Effective Field Theory for Chaotic CFTs, JHEP, 10, 118 (2018) · Zbl 1402.81223 · doi:10.1007/JHEP10(2018)118
[24] Grozdanov, S.; Schalm, K.; Scopelliti, V., Black hole scrambling from hydrodynamics, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.231601
[25] Blake, M.; Davison, RA; Grozdanov, S.; Liu, H., Many-body chaos and energy dynamics in holography, JHEP, 10, 035 (2018) · Zbl 1402.83053 · doi:10.1007/JHEP10(2018)035
[26] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[27] Grozdanov, S.; Kovtun, PK; Starinets, AO; Tadić, P., The complex life of hydrodynamic modes, JHEP, 11, 097 (2019) · Zbl 1429.83090 · doi:10.1007/JHEP11(2019)097
[28] Blake, M.; Davison, RA; Vegh, D., Horizon constraints on holographic Green’s functions, JHEP, 01, 077 (2020) · Zbl 1434.83123 · doi:10.1007/JHEP01(2020)077
[29] Natsuume, M.; Okamura, T., Nonuniqueness of Green’s functions at special points, JHEP, 12, 139 (2019) · Zbl 1431.83104 · doi:10.1007/JHEP12(2019)139
[30] Ghosh, JK, Effective field theory of stochastic diffusion from gravity, JHEP, 05, 130 (2021) · Zbl 1466.83030 · doi:10.1007/JHEP05(2021)130
[31] He, T., The timbre of Hawking gravitons: an effective description of energy transport from holography, JHEP, 09, 092 (2022) · Zbl 1531.83076 · doi:10.1007/JHEP09(2022)092
[32] He, T.; Loganayagam, R.; Rangamani, M.; Virrueta, J., An effective description of momentum diffusion in a charged plasma from holography, JHEP, 01, 145 (2022) · Zbl 1521.81259 · doi:10.1007/JHEP01(2022)145
[33] He, T.; Loganayagam, R.; Rangamani, M.; Virrueta, J., An effective description of charge diffusion and energy transport in a charged plasma from holography, JHEP, 03, 161 (2023) · Zbl 07690725 · doi:10.1007/JHEP03(2023)161
[34] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[35] Mezei, M., Membrane theory of entanglement dynamics from holography, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.106025
[36] Abbasi, N.; Tahery, S., Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP, 10, 076 (2020) · Zbl 1456.83072 · doi:10.1007/JHEP10(2020)076
[37] Jansen, A.; Pantelidou, C., Quasinormal modes in charged fluids at complex momentum, JHEP, 10, 121 (2020) · Zbl 1456.83043 · doi:10.1007/JHEP10(2020)121
[38] K. Heun, Remarks on the logarithmic integrals of regular linear differential equations, Am. J. Math. (1888) 205. [doi:10.2307/2369338]. · JFM 20.0324.01
[39] Chaudhuri, S.; Chowdhury, C.; Loganayagam, R., Spectral Representation of Thermal OTO Correlators, JHEP, 02, 018 (2019) · Zbl 1411.81154 · doi:10.1007/JHEP02(2019)018
[40] G. Aminov, A. Grassi and Y. Hatsuda, Black Hole Quasinormal Modes and Seiberg-Witten Theory, Annales Henri Poincare23 (2022) 1951 [arXiv:2006.06111] [INSPIRE]. · Zbl 1497.83019
[41] E.A. Coddington and N. Levinson, Theory of ordinary differential equations, Tata McGraw-Hill Education (1955). · Zbl 0064.33002
[42] Y. Haraoka, Linear differential equations in the complex domain, Springer (2015). · Zbl 1460.34002
[43] Kodama, H.; Ishibashi, A., A Master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions, Prog. Theor. Phys., 110, 701 (2003) · Zbl 1050.83016 · doi:10.1143/PTP.110.701
[44] Kodama, H.; Ishibashi, A., Master equations for perturbations of generalized static black holes with charge in higher dimensions, Prog. Theor. Phys., 111, 29 (2004) · Zbl 1073.83029 · doi:10.1143/PTP.111.29
[45] de Oliveira, ES; Miranda, AS; Zanchin, VT, New results on the physical interpretation of black-brane gravitational perturbations, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.064047
[46] Maldacena, J.; Stanford, D., Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.106002
[47] I. Halder, Global Symmetry and Maximal Chaos, arXiv:1908.05281 [INSPIRE].
[48] Shenker, SH; Stanford, D., Stringy effects in scrambling, JHEP, 05, 132 (2015) · Zbl 1388.83500 · doi:10.1007/JHEP05(2015)132
[49] Dodelson, M., Holographic thermal correlators from supersymmetric instantons, SciPost Phys., 14, 116 (2023) · Zbl 07902459 · doi:10.21468/SciPostPhys.14.5.116
[50] Bhatta, A.; Mandal, T., Exact thermal correlators of holographic CFTs, JHEP, 02, 222 (2023) · Zbl 1541.81153 · doi:10.1007/JHEP02(2023)222
[51] Fidkowski, L.; Hubeny, V.; Kleban, M.; Shenker, S., The Black hole singularity in AdS / CFT, JHEP, 02, 014 (2004) · doi:10.1088/1126-6708/2004/02/014
[52] Festuccia, G.; Liu, H., A Bohr-Sommerfeld quantization formula for quasinormal frequencies of AdS black holes, Adv. Sci. Lett., 2, 221 (2009) · doi:10.1166/asl.2009.1029
[53] Grinberg, M.; Maldacena, J., Proper time to the black hole singularity from thermal one-point functions, JHEP, 03, 131 (2021) · Zbl 1461.83017 · doi:10.1007/JHEP03(2021)131
[54] A.S. Miranda and V.T. Zanchin, Quasinormal modes of plane-symmetric anti-de Sitter black holes: A Complete analysis of the gravitational perturbations, Phys. Rev. D73 (2006) 064034 [gr-qc/0510066] [INSPIRE].
[55] A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP2008 (2008) 030 [arXiv:0809.0297] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.