×

Quantum symmetries of quantum metric spaces and non-local games. (English) Zbl 07741136

Summary: We generalize T. Banica’s construction of the quantum isometry group of a metric space [Pac. J. Math. 219, No. 1, 27–51 (2005; Zbl 1104.46039)] to the class of quantum metric spaces in the sense of G. Kuperberg and N. Weaver [Mem. Am. Math. Soc. 1010, 1–80 (2012; Zbl 1244.46035)]. We also introduce quantum isometries between two quantum metric spaces, and we show that if a pair of quantum metric spaces is algebraically quantum isometric, then their quantum isometry groups are monoidally equivalent. Motivated by the recent work on the graph isomorphism game, we introduce a new two-player nonlocal game called the metric isometry game, where players can win classically if and only if the metric spaces are isometric. Winning quantum strategies of this game align with quantum isometries of the metric spaces.

MSC:

81P05 General and philosophical questions in quantum theory
46B04 Isometric theory of Banach spaces
31E05 Potential theory on fractals and metric spaces
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
Full Text: DOI

References:

[1] CLAIRE ANANTHARAMAN and SORIN THEODOR POPA, An introduction to II 1 factors (2010). Class notes, available at https://www.google.com/url? sa=t&source=web&rct=j&opi=89978449&url=https:// www.math.ucla.edu/ popa/ Books/IIun.pdf&ved=2ahUKEwj7-5P3h_j_AhXuFTQIHbMZA_YQFnoECAwQAQ&usg= AOvVaw0QWNXd8wh4XX9ZiqVvlrUu.
[2] ALBERT ATSERIAS, LAURA MANČINSKA, DAVID E. ROBERSON, ROBERTŠÁMAL, SI-MONE SEVERINI, and ANTONIOS VARVITSIOTIS, Quantum and non-signalling graph isomor-phisms, J. Combin. Theory Ser. B 136 (2019), 289-328. https://dx.doi.org/10.1016/j. jctb.2018.11.002. MR3926289 · Zbl 1414.05197 · doi:10.1016/j.jctb.2018.11.002.MR3926289
[3] TEODOR BANICA, Quantum automorphism groups of small metric spaces, Pacific J. Math. 219 (2005), no. 1, 27-51. https://dx.doi.org/10.2140/pjm.2005.219.27. MR2174219 · Zbl 1104.46039 · doi:10.2140/pjm.2005.219.27.MR2174219
[4] JULIEN BICHON, Galois extension for a compact quantum group (February 1999), preprint. https://doi.org/10.48550/arXiv.math/9902031. · doi:10.48550/arXiv.math/9902031
[5] , Hopf-Galois objects and cogroupoids, Rev. Un. Mat. Argentina 55 (2014), no. 2, 11-69. MR3285340 · Zbl 1414.05197 · doi:10.1016/j.jctb.2018.11.002
[6] JULIEN BICHON, AN DE RIJDT, and STEFAAN VAES, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703-728. https://dx.doi.org/10.1007/s00220-005-1442-2. MR2202309 · Zbl 1104.46039 · doi:10.2140/pjm.2005.219.27
[7] MICHAEL BRANNAN, ALEXANDRU CHIRVASITU, KARI EIFLER, SAMUEL J. HARRIS, VERN IVAL PAULSEN, XIAOYU SU, and MATEUSZ WASILEWSKI, Bigalois extensions and the graph isomorphism game, Comm. Math. Phys. 375 (2020), no. 3, 1777-1809. https://dx. doi.org/10.1007/s00220-019-03563-9. MR4091496 · Zbl 1443.91086 · doi:10.48550/arXiv.math/9902031
[8] MICHAEL BRANNAN, PRIYANGA GANESAN, and SAMUEL J. HARRIS, The quantum-to-classical graph homomorphism game (September 2020), preprint. https://doi.org/10.48550/ arXiv.2009.07229. · Zbl 1122.46046 · doi:10.1007/s00220-005-1442-2
[9] GILLES BRASSARD, RICHARD CLEVE, and ALAIN TAPP, Cost of exactly simulating quan-tum entanglement with classical communication, Phys. Rev. Lett. 83 (1999), no. 9, 1874-1877.
[10] https://dx.doi.org/10.1103/PhysRevLett.83.1874. · Zbl 1443.91086 · doi:10.1007/s00220-019-03563-9
[11] JAVIER ALEJANDRO CHÁVEZ-DOMÍNGUEZ and ANDREW SWIFT, Asymptotic dimension and coarse embeddings in the quantum setting (May 2020), preprint. https://doi.org/10. 48550/arXiv.2005.10443. · Zbl 1525.46043 · doi:10.48550/arXiv.2009.07229
[12] ALEXANDRU CHIRVASITU, On quantum symmetries of compact metric spaces, J. Geom. Phys. 94 (2015), 141-157. https://dx.doi.org/10.1016/j.geomphys.2015.02.013. MR3350273 · Zbl 1318.81038 · doi:10.1016/j.geomphys.2015.02.013.MR3350273
[13] ANDREA COLADANGELO and JALEX STARK, Unconditional separation of finite and infinite-dimensional quantum correlations (April 2018), preprint. https://doi.org/10.48550/arXiv. 1804.05116. · doi:10.1103/PhysRevLett.83.1874
[14] ALAIN CONNES, Classification of injective factors. Cases II 1 , II ∞ , III λ , λ = 1, Ann. of Math. (2) 104 (1976), no. 1, 73-115. https://dx.doi.org/10.2307/1971057. MR454659 · Zbl 0343.46042 · doi:10.48550/arXiv.2005.10443
[15] ALAIN CONNES and JOHN LOTT, The metric aspect of noncommutative geometry, New Symmetry Principles in Quantum Field Theory (Cargèse, 1991), NATO Adv. Sci. Inst. Ser. B: Phys., vol. 295, Plenum, New York, 1992, pp. 53-93. http://dx.doi.org/10.1007/ 978-1-4615-3472-3_3. MR1204452 · Zbl 1221.58007 · doi:10.48550/arXiv.1804.05116
[16] MATHIJS S. DIJKHUIZEN and TOM H. KOORNWINDER, CQG algebras: A direct algebraic approach to compact quantum groups, Lett. Math. Phys. 32 (1994), no. 4, 315-330. https://dx. doi.org/10.1007/BF00761142. MR1310296 · Zbl 0343.46042 · doi:10.2307/1971057
[17] KEN DYKEMA, VERN IVAL PAULSEN, and JITENDRA PRAKASH, Non-closure of the set of quantum correlations via graphs, Comm. Math. Phys. 365 (2019), no. 3, 1125-1142. https:// dx.doi.org/10.1007/s00220-019-03301-1. MR3916992 · Zbl 1408.81008 · doi:10.1007/s00220-019-03301-1.MR3916992
[18] DEBASHISH GOSWAMI, Existence and examples of quantum isometry groups for a class of compact metric spaces, Adv. Math. 280 (2015), 340-359. https://dx.doi.org/10.1016/j.aim.2015. 03.024. MR3350223 · Zbl 1316.81055 · doi:10.1016/j.aim.2015.03.024.MR3350223
[19] JOHN WILLIAM HELTON Jr., KYLE P. MEYER, VERN IVAL PAULSEN, and MATTHEW SATRIANO, Algebras, synchronous games, and chromatic numbers of graphs, New York J. Math. 25 (2019), 328-361. MR3933765 · Zbl 1408.81008 · doi:10.1007/s00220-019-03301-1
[20] ZHENGFENG JI, ANAND NATARAJAN, THOMAS VIDICK, JOHN WRIGHT, and HENRY YUEN, Quantum soundness of testing tensor codes, 2021 IEEE 62nd Annual Symposium on Foun-dations of Computer Science-FOCS 2021, IEEE Computer Soc., Los Alamitos, CA, [2022] c 2022, pp. 586-597. http://dx.doi.org/10.1109/FOCS52979.2021.00064. MR4399717 · Zbl 1316.81055 · doi:10.1016/j.aim.2015.03.024
[21] SE-JIN KIM, VERN IVAL PAULSEN, and CHRISTOPHER SCHAFHAUSER, A synchronous game for binary constraint systems, J. Math. Phys. 59 (2018), no. 3, 032201, 17 pp. https:// dx.doi.org/10.1063/1.4996867. MR3776034 · Zbl 1384.81018 · doi:10.1063/1.4996867.MR3776034
[22] GREG KUPERBERG and NIK WEAVER, A von Neumann algebra approach to quantum met-rics, Mem. Amer. Math. Soc. 215 (2012), no. 1010, v, 1-80. https://dx.doi.org/10.1090/ S0065-9266-2011-00637-4 . MR2908248 · Zbl 1244.46035
[23] JOHAN KUSTERMANS, Locally compact quantum groups in the universal setting, Internat. J. Math. 12 (2001), no. 3, 289-338. https://dx.doi.org/10.1142/S0129167X01000757. MR1841517 · Zbl 1384.81018 · doi:10.1063/1.4996867
[24] JOHAN KUSTERMANS and STEFAAN VAES, Locally compact quantum groups, Ann. Sci.École Norm. Sup. (4) 33 (2000), no. 6, 837-934 (English, with English and French summaries). https://dx.doi.org/10.1016/S0012-9593(00)01055-7. MR1832993 · Zbl 1244.46037 · doi:10.1090/S0065-9266-2011-00637-4
[25] MARTINO LUPINI, LAURA MANČINSKA, and DAVID E. ROBERSON, Nonlocal games and quantum permutation groups, J. Funct. Anal. 279 (2020), no. 5, 108592, 44 pp. https://dx. doi.org/10.1016/j.jfa.2020.108592. MR4097284 · Zbl 1111.46311 · doi:10.1142/S0129167X01000757
[26] LAURA MANČINSKA and DAVID E. ROBERSON, Quantum isomorphism is equivalent to equal-ity of homomorphism counts from planar graphs, 2020 IEEE 61st Annual Symposium on Founda-tions of Computer Science, IEEE Computer Soc., Los Alamitos, CA, [2020] c 2020, pp. 661-672. https://dx.doi.org/10.1109/FOCS46700.2020.00067. MR4232075 · Zbl 1034.46508 · doi:10.1016/S0012-9593(00)01055-7
[27] BENJAMIN MUSTO, DAVID REUTTER, and DOMINIC VERDON, A compositional approach to quantum functions, J. Math. Phys. 59 (2018), no. 8, 081706, 42 pp. https://dx.doi.org/ 10.1063/1.5020566. MR3849575 · Zbl 1508.81313 · doi:10.1016/j.jfa.2020.108592
[28] SERGEY NESHVEYEV and LARS TUSET, Compact Quantum Groups and their Representation Categories, Cours Spécialisés [Specialized Courses], vol. 20, Société Mathématique de France, Paris, 2013. MR3204665 · Zbl 1316.46003
[29] VERN IVAL PAULSEN and MIZANUR RAHAMAN, Bisynchronous games and factorizable maps, Ann. Henri Poincaré 22 (2021), no. 2, 593-614. https://dx.doi.org/10.1007/ s00023-020-01003-2. MR4205237 · Zbl 1395.05112 · doi:10.1063/1.5020566
[30] JOHAN QUAEGEBEUR and MARIE SABBE, Isometric coactions of compact quantum groups on compact quantum metric spaces, Proc. Indian Acad. Sci. Math. Sci. 122 (2012), no. 3, 351-373. https://dx.doi.org/10.1007/s12044-012-0082-7. MR2972658 · Zbl 1277.46038
[31] MARC A. RIEFFEL, Gromov-Hausdorff distance for quantum metric spaces, with Appendix 1, ti-tled “Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance” by HAN-FENG LI, Mem. Amer. Math. Soc. 168 (2004), no. 796, 1-65. https://dx.doi.org/10.1090/ memo/0796. MR2055927 · Zbl 1457.91108 · doi:10.1007/s00023-020-01003-2
[32] THOMAS TIMMERMANN, An Invitation to Quantum Groups and Duality: From Hopf Algebras to Multiplicative Unitaries and Beyond, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. https://dx.doi.org/10.4171/043. MR2397671 · Zbl 1277.46038 · doi:10.1007/s12044-012-0082-7
[33] STEFAAN VAES, The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), no. 2, 426-480. https://dx.doi.org/10.1006/jfan.2000. 3704. MR1814995 · Zbl 1011.46058 · doi:10.1006/jfan.2000.3704.MR1814995
[34] SHUZHOU WANG, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195-211. https://dx.doi.org/10.1007/s002200050385. MR1637425 · Zbl 1013.17008 · doi:10.1007/s002200050385.MR1637425
[35] NIK WEAVER, Quantum relations, Mem. Amer. Math. Soc. 215 (2012), no. 1010, v-vi, 81-140. MR2908249 · Zbl 1244.46037
[36] , Quantum graphs as quantum relations, J. Geom. Anal. 31 (2021), no. 9, 9090-9112. · Zbl 1011.46058 · doi:10.1006/jfan.2000.3704
[37] https://dx.doi.org/10.1007/s12220-020-00578-w. MR4302212 · Zbl 1011.46058 · doi:10.1006/jfan.2000.3704
[38] STANISŁAW LECH WORONOWICZ, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613-665. http://dx.doi.org/10.1007/BF01219077. MR901157 · Zbl 1013.17008 · doi:10.1007/s002200050385
[39] , Compact quantum groups, Symétries quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, pp. 845-884. MR1616348 · Zbl 0997.46045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.