×

Affine Subspace concentration conditions for centered polytopes. (English) Zbl 07740605

Summary: Recently, K.-Y. Wu introduced affine subspace concentration conditions for the cone volumes of polytopes and proved that the cone volumes of centered, reflexive, smooth lattice polytopes satisfy these conditions. We extend the result to arbitrary centered polytopes.
{© 2023 The Authors. Mathematika is copyright © University College London and published by the London Mathematical Society on behalf of University College London.}

MSC:

26B15 Integration of real functions of several variables: length, area, volume
28A75 Length, area, volume, other geometric measure theory
52A23 Asymptotic theory of convex bodies
52A38 Length, area, volume and convex sets (aspects of convex geometry)
52B11 \(n\)-dimensional polytopes

References:

[1] S.Artstein‐Avidan, A.Giannopoulos, and V.‐D.Milman, Asymptotic geometric analysis. Part I, AMS, Providence, RI, 2015. · Zbl 1337.52001
[2] T.Bonnesen and W.Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934. · JFM 60.0673.01
[3] K. J.Böröczky and P.Hegedűs, The cone volume measure of antipodal points, Acta Math. Hungar.146 (2015), no. 2, 449-465. · Zbl 1363.52007
[4] K. J.Böröczky, P.Hegedűs, and G.Zhu, On the discrete logarithmic Minkowski problem, Int. Math. Res. Not.2016 (2016), no. 6, 1807-1838. · Zbl 1345.52002
[5] K. J.Böröczky and M.Henk, Cone‐volume measures of general centered convex bodies, Adv. Math.286 (2016), 703-721. · Zbl 1334.52003
[6] K. J.Böröczky, M.Henk, and H.Pollehn, Subspace concentration of dual curvature measures of symmetric convex bodies, J. Differ. Geom.109 (2018), no. 3, 411-429. · Zbl 1397.52005
[7] K. J.Böröczky, E.Lutwak, D.Yang, and G.Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc.26 (2013), 831-852. · Zbl 1272.52012
[8] K. J.Böröczky, E.Lutwak, D.Yang, G.Zhang, and Y.Zhao, The dual Minkowski problem for symmetric convex bodies, Adv. Math.356 (2019), 106805, 30. · Zbl 1427.52006
[9] S.Chen, Q.Li, and G.Zhu, The logarithmic Minkowski problem for non‐symmetric measures, Trans. Amer. Math. Soc.371 (2019), 2623-2641. · Zbl 1406.52018
[10] R. J.Gardner, Geometric tomography, 2nd ed., Cambridge University Press, New York, 2006. · Zbl 1102.52002
[11] P. M.Gruber, Convex and discrete geometry, Springer, Berlin, 2007. · Zbl 1139.52001
[12] B.Grünbaum, Partitions of mass‐distribution and of convex bodies by hyperplanes, Pacific J. Math.10 (1960), no. 4, 1257-1261. · Zbl 0101.14603
[13] M.Henk and E.Linke, Cone‐volume measures of polytopes, Adv. Math.253 (2014), 50-62. · Zbl 1308.52007
[14] M.Henk, J.Richter‐Gebert, and G. M.Ziegler, Basic properties of convex polytopes, Handbook of discrete and computational geometry, 3rd ed., by J. E.Goodman (ed.), J.O’Rourke (ed.), and C. D.Tóth (ed.) (eds.), CRC Press, Boca Raton, FL, 2017, pp. 383-413.
[15] M.Hering, B.Nill, and H.Süß, Stability of tangent bundles on smooth toric Picard‐rank‐2 varieties and surfaces, Facets of algebraic geometry. Vol. II, London Math. Soc. Lecture Note Ser., vol. 473, Cambridge Univ. Press, Cambridge, 2022, pp. 1-25. · Zbl 1489.14065
[16] Y.Huang, E.Lutwak, D.Yang, and G.Zhang, Geometric measures in the dual Brunn‐Minkowski theory and their associated Minkowski problems, Acta Math.216 (2016), no. 2, 325-388. · Zbl 1372.52007
[17] D.Hug, E.Lutwak, D.Yang, and G.Zhang, On the \(L_p\) Minkowski problem for polytopes, Discrete Comput. Geom.33 (2005), no. 4, 699-715. · Zbl 1078.52008
[18] R.Schneider, Convex bodies: the Brunn‐Minkowski theory, Cambridge University Press, Cambridge, UK, 2013.
[19] K.‐Y.Wu, Affine subspace concentration conditions, Preprint, arXiv: 2201.06062, 2022.
[20] Y.Zhou and B.He, On LYZ’s conjecture for the U‐functional, Adv. Appl. Math.87 (2017), 43-57. · Zbl 1371.52004
[21] G. M.Ziegler, Lectures on polytopes, Springer, New York, 2007.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.