×

A posteriori error estimation and adaptivity for multiple-network poroelasticity. (English) Zbl 07739201

Summary: The multiple-network poroelasticity (MPET) equations describe deformation and pressures in an elastic medium permeated by interacting fluid networks. In this paper, we (i) place these equations in the theoretical context of coupled elliptic-parabolic problems, (ii) use this context to derive residual-based a posteriori error estimates and indicators for fully discrete MPET solutions and (iii) evaluate the performance of these error estimators in adaptive algorithms for a set of test cases: ranging from synthetic scenarios to physiologically realistic simulations of brain mechanics.

MSC:

65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences
92-08 Computational methods for problems pertaining to biology

References:

[1] E. Ahmed, F. Radu and J. Nordbotten, Adaptive poromechanics computations based on a posteriori error estimates for fully mixed formulations of Biot’s consolidation model. Comput. Methods Appl. Mech. Eng. 347 (2019) 264-294. · Zbl 1440.74117 · doi:10.1016/j.cma.2018.12.016
[2] E.C. Aifantis, On the problem of diffusion in solids. Acta Mech. 37 (1980) 265-296. · Zbl 0447.73002 · doi:10.1007/BF01202949
[3] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E. Rognes and G. Wells, The FEniCS project version 1.5. Arch. Numer. Soft. 3 (2015).
[4] M. Bai, D. Elsworth and J.-C. Roegiers, Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29 (1993) 1621-1633. · doi:10.1029/92WR02746
[5] G.I. Barenblatt, On certain boundary-value problems for the equations of seepage of a liquid in fissured rocks. J. Appl. Math. Mech. 27 (1963) 513-518. · Zbl 0136.46703 · doi:10.1016/0021-8928(63)90017-0
[6] G.I. Barenblatt, IuP Zheltov and I.N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissued rocks (strata). J. Appl. Math. Mech. 24 (1960) 1286-1303. · Zbl 0104.21702 · doi:10.1016/0021-8928(60)90107-6
[7] M. Bendahmane, R. Bürger and R. Ruiz-Baier, A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Methods Partial Differ. Equ. 26 (2010) 1377-1404. · Zbl 1206.92004 · doi:10.1002/num.20495
[8] M. Biot, General theory of three-dimensional consolidation. J. Appl. Phys. 12 (1941) 155-164. · JFM 67.0837.01
[9] M. Biot, Theory of elasticity and consolidation for a porous anisotropic media. J. Appl. Phys. 26 (1955) 182-185. · Zbl 0067.23603 · doi:10.1063/1.1721956
[10] S. Budday, R. Nay, R. de Rooij, P. Steinmann, T. Wyrobek, T. Ovaert and E. Kuhl, Mechanical properties of gray and white matter brain tissue by indentation. J. Mech. Behav. Biomed. Mater. 46 (2015) 318-330. · doi:10.1016/j.jmbbm.2015.02.024
[11] J.B. Conway, A Course in Functional Analysis, 2nd ed., Springer-Verlag, New York, NY (1997).
[12] C. Daversin-Catty, V. Vinje, K.-A. Mardal and M.E. Rognes, The mechanisms behind perivascular fluid flow. Plos One 15 (2020) e0244442. · doi:10.1371/journal.pone.0244442
[13] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106-1124. · Zbl 0854.65090
[14] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag (2004). · Zbl 1059.65103 · doi:10.1007/978-1-4757-4355-5
[15] A. Ern and S. Meunier, A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems. Math. Model. Numer. Anal. 43 (2009) 353-375. · Zbl 1166.76036 · doi:10.1051/m2an:2008048
[16] L. Evans, Partial Differential Equations. American Mathematical Society, Providence, R.I. (2010). · Zbl 1194.35001
[17] B. Fischl, Freesurfer. Neuroimage 62 (2012) 774-781. · doi:10.1016/j.neuroimage.2012.01.021
[18] L. Guo, J. Vardakis, T. Lassila, M. Mitolo, N. Ravikumar, D. Chou, M. Lange, A. Sarrami-Foroushani, B. Tully, Z. Taylor, S. Varma, A. Venneri, A. Frangi and Y. Ventikos, Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus 8 (2018) 1-15.
[19] L. Guo, Z. Li, J. Lyu, Y. Mei, J. Vardakis, D. Chen, C. Han, X. Lou and Y. Ventikos, On the validation of a multiple-network poroelastic model using arterial spin labeling mri data. Frontiers in Comput. Neurosci. 13 (2019) 60. · doi:10.3389/fncom.2019.00060
[20] M.Y. Khaled, D.E. Beskos and E.C. Aifantis, On the theory of consolidation with double porosity. III. A finite-element formulation. Int. J. Numer. Anal. Meth. Geomech. 8 (1984) 101-123. · Zbl 0586.73116 · doi:10.1002/nag.1610080202
[21] A. Khan and D. Silvester, Robust a posteriori error estimation for mixed finite element approximation of linear poroelasticity. IMA J. Numer. Anal. 41 (2020) 2000-2025. · Zbl 1511.65124
[22] K. Kuman, S. Kyas, J. Nordbotten and S. Repin, Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem. Comput. Math. Appl. 91 (2021) 122-149. · Zbl 1524.76458 · doi:10.1016/j.camwa.2020.05.005
[23] J.J. Lee, E. Piersanti, K.-A. Mardal and M.E. Rognes, A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41 (2019) A722-A747. · Zbl 1417.65162
[24] Y. Li and L. Zikatanov, Residual-based a posteriori error estimates of mixed methods for a three-field Biot’s consolidation model. Preprint Preprint arXiv:1911.08692 (2019). · Zbl 1493.65157
[25] Z. Lotfian and M.V. Sivaselvan, Mixed finite element formulation for dynamics of porous media. Int. J. Numer. Methods Eng. 115 (2018) 141-171. · Zbl 07864832 · doi:10.1002/nme.5799
[26] K.-A. Mardal, M.E. Rognes, T.B. Thompson and L. Magnus Valnes, Mathematical Modeling of the Human Brain: From Magnetic Resonance Images to Finite Element Simulation. Springer (2021). · Zbl 1501.92001
[27] J. Nordbotten, T. Rahman, S.I. Repin and J. Valdman, A posteriori error estimates for approximate solutions of the Barenblatt-Biot poroelastic model. Comput. Methods Appl. Math. 10 (2010) 302-314. · Zbl 1283.65100 · doi:10.2478/cmam-2010-0017
[28] Á. Plaza and M.-C. Rivara, Mesh refinement based on the 8-tetrahedra longest-edge partition, in IMR, Citeseer (2003) 67-78.
[29] O. Ricardo and R. Ruiz-Baier, Locking-free finite element methods for poroelasticity. SIAM J. Numer Anal. 54 (2016) 2951-2973. · Zbl 1457.65210 · doi:10.1137/15M1050082
[30] R. Riedlbeck, D. Di Pietro, A. Ern, S. Granet and K. Kazymyrenko, Stress and flux reconstructions in Biot’s poro-elasticity problem with application to a posteriori error analysis. Comput. Math. Appl. 73 (2017) 1593-1610. · Zbl 1370.76086 · doi:10.1016/j.camwa.2017.02.005
[31] C. Rodrigo, X. Hu, P. Ohm, J.H. Adler, F.J. Gaspar and L.T. Zikatanov, New stabilized discretizations for poroelasticity and the Stoke’s equations. Comput. Methods Appl. Mech. Eng. 341 (2018) 467-484. · Zbl 1440.76027 · doi:10.1016/j.cma.2018.07.003
[32] R.E. Showalter, Diffusion in poro-elastic media. J. Math. Anal. Appl. 24 (2000) 310-340. · Zbl 0979.74018 · doi:10.1006/jmaa.2000.7048
[33] R.E. Showalter and B. Momken, Single-phase flow in composite poroelastic media. Math. Methods Appl. Sci. 25 (2002) 115-139. · Zbl 1097.35067 · doi:10.1002/mma.276
[34] G. Söderlind, Automatic control and adaptive time-stepping. Numer. Algorithms 31 (2002) 281-310. · Zbl 1012.65080 · doi:10.1023/A:1021160023092
[35] K. Terzaghi, Theoretical Soil Mechanics. Wiley (1943). · doi:10.1002/9780470172766
[36] B. Tully and Y. Ventikos, Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid. Mech. 667 (2011) 188-215. · Zbl 1225.76317
[37] J. Vardakis, D. Chou, B. Tully, C. Hung, T. Lee, P.-H. Tsui and Y. Ventikos, Investigating cerebral oedema using poroelasticity. Med. Eng. Phys. 38 (2016) 48-57. · doi:10.1016/j.medengphy.2015.09.006
[38] V. Vinje, A. Eklund, K.-A. Mardal, M.E. Rognes anb K.-H. Støverud, Intracranial pressure elevation alters CSF clearance pathways. Fluids Barriers CNS 17 (2020) 1-19. · doi:10.1186/s12987-020-00189-1
[39] R.K. Wilson and E.C. Aifantis, On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20 (1982) 1009-1035. · Zbl 0493.76094 · doi:10.1016/0020-7225(82)90036-2
[40] J. Young, B. Riviere, C. Cox and K. Uray, A mathematical model of intestinal edema formation. Math. Med. Bio. 31 (2014) 1189-1210. · Zbl 1304.92073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.