×

Stochastic estimation of Green’s functions with application to diffusion and advection-diffusion-reaction problems. (English) Zbl 07736210

Summary: A stochastic method is described for estimating Green’s functions (GF’s), appropriate to linear advection-diffusion-reaction transport problems, evolving in arbitrary geometries. By allowing straightforward construction of approximate, though high-accuracy GF’s, within any geometry, the technique solves the central challenge in obtaining Green’s function solutions. In contrast to Monte Carlo solutions of individual transport problems, subject to specific sets of conditions and forcing, the proposed technique produces approximate GF’s that can be used: a) to obtain (infinite) sets of solutions, subject to any combination of (random and deterministic) boundary, initial, and internal forcing, b) as high fidelity direct models in inverse problems, and c) as high quality process models in thermal and mass transport design, optimization, and process control problems. The technique exploits an equivalence between the adjoint problem governing the transport problem Green’s function, \(G(\mathbf{x},t | \mathbf{x}',t')\), and the backward Kolmogorov problem governing the transition density, \(p(\mathbf{x},t|\mathbf{x}', t')\), of the stochastic process used in Green’s function construction. We address nonspecialists and report four contributions. First, a recipe is outlined for diagnosing when stochastic Green’s function estimation can be used, and for subsequently estimating the transition density and associated Green’s function. Second, a naive estimator for the transition density is proposed and tested. Third, Green’s function estimation error produced by random walker absorption at Dirichlet boundaries is suppressed using a simple random walker splitting technique. Last, spatial discontinuity in estimated GF’s, produced by the naive estimator, is suppressed using a simple area averaging method. The paper provides guidance on choosing key numerical parameters, and the technique is tested against two simple unsteady, linear heat conduction problems, and an unsteady groundwater dispersion problem, each having known, exact GF’s.

MSC:

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
62G05 Nonparametric estimation
65C05 Monte Carlo methods
35K57 Reaction-diffusion equations

References:

[1] Barton, G., Elements of Green’s Functions and Propagation: Potentials, Diffusion, and Waves (1989), Oxford University Press · Zbl 0682.35001
[2] Cole, K. D.; Beck, J. V.; Haji-Sheikh, A.; Litkouhi, B., Heat Conduction Using Green’s Functions (2010), Taylor & Francis
[3] Hon, Y. C.; Li, M.; Melnikov, Y. A., Inverse source identification by Green’s function, Eng. Anal. Bound. Elem., 34, 352-358 (2010) · Zbl 1244.65162
[4] Beck, J. V.; Blackwell, B.; Haji-Sheikh, A., Comparison of some inverse heat conduction methods using experimental data, Int. J. Heat Mass Transf., 39, 3649-3657 (1996)
[5] Fernandes, A. P.; dos Santos, M. B.; Guimarães, G., An analytical transfer function method to solve inverse heat conduction problems, Appl. Math. Model., 39, 6897-6914 (2015) · Zbl 1443.80003
[6] Menemenlis, D.; Fukumori, I.; Lee, T., Using Green’s functions to calibrate an ocean general circulation model, Mon. Weather Rev., 133, 1224-1240 (2005)
[7] Boutami, S.; Fan, S., Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson’s equation in a Green’s function formalism: part I. Implementation with the method of discrete dipole approximation, J. Opt. Soc. Am. B, 36, 2378-2386 (2019)
[8] Boutami, S.; Fan, S., Efficient pixel-by-pixel optimization of photonic devices utilizing the Dyson’s equation in a Green’s function formalism: part II. Implementation using standard electromagnetic solvers, J. Opt. Soc. Am. B, 36, 2387-2394 (2019)
[9] Economou, E. N., Green’s Functions in Quantum Physics (2006), Springer
[10] Costabel, M., Principles of boundary element methods, Comput. Phys. Rep., 6, 243-274 (1987)
[11] Brebbia, C. A.; Walker, S., Boundary Element Techniques in engineering (1980), Newnes-Butterworths · Zbl 0444.73065
[12] Biagioni, D. J., Numerical Construction of Green’s Functions in High Dimensional elliptic Problems with Variable Coefficients and Analysis of Renewable Energy Data via Sparse and Separable Approximations (2012), Applied Mathemetics, University of Colorado, Boulder, Ph.D. dissertation
[13] Taigbenu, A. E., The green element method, Int. J. Numer. Methods Eng., 38, 2241-2263 (1995) · Zbl 0849.76041
[14] Wu, Y.; Cheng, L.; Fang, S.; Huang, S.; Jia, P., Green element method-based discrete fracture model for simulation of the transient flow in heterogeneous fractured porous media, Adv. Water Resour., 136, 103489 (2020)
[15] Lorinczi, P.; Harris, S. D.; Elliott, L., Modelling of highly-heterogeneous media using a flux-vector-based green element method, Eng. Anal. Bound. Elem., 30, 818-833 (2006) · Zbl 1195.76320
[16] Zienkiewicz, O. C., The Finite Element Method In Engineering science (1971), McGraw-Hill · Zbl 0237.73071
[17] Bathe, K. J., Finite Element Method (2008), Wiley
[18] Reddy, J. N., An Introduction to the Finite Element Method (2005), McGraw-Hill
[19] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2012), Dover
[20] Sanskrityayn, A.; Singh, V. P.; Bharati, V. K.; Kumar, N., Analytical solution of two-dimensional advection-dispersion equation with spatio-temporal coefficients for point sources in an infinite medium using Green’s function method, Environ. Fluid Mech., 18, 739-757 (2018)
[21] Keanini, R. G., Green’s function-stochastic methods framework for probing nonlinear evolution problems: Burger’s equation, the nonlinear Schrödinger’s equation, and hydrodynamic organization of near-molecular-scale vorticity, Ann. Phys., 326, 1002-1031 (2011) · Zbl 1223.35280
[22] Jovanovic, M.; Bamieh, B., Modeling flow statistics using the linearized Navier-Stokes equations, Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, vol. 5, 4944-4949 (2001)
[23] Levich, V. G., Physicochemical Hydrodynamics (1962), Prentice Hall
[24] Williams, F. A., Combustion Theory: The Fundamental Theory of Chemical Reacting Flow Systems (1965), Addison-Wesley
[25] Grindrod, P., The Theory and Applications of Reaction-Diffusion Equations: Patterns and Waves (1996), Clarendon Press · Zbl 0867.35001
[26] Messiah, A., Quantum Mechanics (2014), Dover
[27] Landau, L. D.; Lifshitz, E. M.; Pitaevskij, L. P., Course of theoretical physics, Physical Kinetics, vol. 10 (1981), Oxford
[28] Colonna, G., Boltzmann and vlasov equations in plasma physics, Plasma Modeling (2016), IOP Publishing
[29] Whitham, G. B., Linear and Nonlinear Waves (2011), Wiley · Zbl 0373.76001
[30] Drazin, P. G.; Johnson, R. S., Solitons: An Introduction (1989), Cambridge U. Press · Zbl 0661.35001
[31] Gardiner, C. W., Handbook of Stochastic Methods for Physics, Chemistry, and the Natural Sciences (2004), Springer · Zbl 1143.60001
[32] Muller, M. E., Some continuous Monte Carlo methods for the Dirichlet problem, Ann. Math. Stat., 27, 569-589 (1956) · Zbl 0075.28902
[33] Sabelfeld, K. K., Monte Carlo Methods in Boundary Value Problems (1991), Springer · Zbl 0728.65002
[34] Booth, T. E., Exact Monte Carlo solution of elliptic partial differential equations, J. Comput. Phys., 39, 396-404 (1981) · Zbl 0451.65085
[35] Sabelfeld, K. K.; Simonov, N. A., Random Walks on Boundary for Solving PDEs (2013), De Gruyter · Zbl 0871.60050
[36] Haji-Sheikh, A.; Sparrow, E. M., The floating random walk and its application to Monte Carlo solutions of heat equations, SIAM J. Appl. Math., 14, 370-389 (1966) · Zbl 0148.39402
[37] Mascagni, M.; Simonov, N. A., Monte carlo methods for calculating some physical properties of large molecules, SIAM J. Sci. Comput., 26, 339-357 (2004) · Zbl 1075.65003
[38] Silverman, B. W., Density Estimation for Statistics and Data Analysis (1986), Chapman & Hall · Zbl 0617.62042
[39] Milstein, G. N.; Schoenmakers, J. G.M.; Spokoiny, V., Transition density estimation for stochastic differential equations via forward-reverse representations, Bernoulli, 10, 281-312 (2004) · Zbl 1085.62098
[40] Devroye, L.; Gyorfi, L., Nonparametric Density Estimation: The L1 View (1985), Wiley · Zbl 0546.62015
[41] Olariu, E.; Cadwell, K. K.; Hancock, E.; Trueman, D.; Chevrou-Severac, H., Current recommendations on the estimation of transition probabilities in Markov cohort models for use in health care decision-making: a targeted literature review, Clin. Outcomes Res., 9, 537-546 (2017)
[42] Rudemo, M., Empirical choice of histograms and kernel density estimators, Scand. J. Stat., 9, 65-78 (1982) · Zbl 0501.62028
[43] Schuss, Z., Theory and Applications of Stochastic Processes: An Analytical Approach (2009), Springer
[44] Schuss, Z., Brownian Dynamics at Boundaries and Interfaces: In Physics, Chemistry, and Biology (2013), Springer · Zbl 1305.60006
[45] Hansen, J. A.; Penland, C., Efficient approximate techniques for integrating stochastic differential equations, Mon. Weather Rev., 134, 3006-3014 (2006)
[46] Milstein, G. N., Approximate integration of stochastic differential equations, Theory Probab. Appl., 19, 557-562 (1975) · Zbl 0314.60039
[47] Milstein, G. N., Numerical Integration of Stochastic Differential Equations (1994), Springer · Zbl 0810.65144
[48] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (2011), Springer · Zbl 0701.60054
[49] Sauer, T., Numerical solution of stochastic differential equations in finance, Handbook of Computational finance (2012), Springer · Zbl 1229.91347
[50] Ulam, S.; Richtmyer, R. D.; von Neumann, J., Statistical methods in neutron diffusion, Los Alamos Scientific Laboratory report LAMS-551 (1947)
[51] Metropolis, N.; Ulam, S., The Monte Carlo method, J. Am. Stat. Assoc., 44, 335-341 (1949) · Zbl 0033.28807
[52] Todd, J., Experiments in the solution of differential equations by Monte Carlo methods, J. Washington Acad. Sci., 12, 377-381 (1954) · Zbl 0059.11101
[53] Dimnov, I. T.; McKee, D., Monte Carlo Methods for Applied Scientists (1998), World Scientific
[54] Bass, R., Stochastic Processes (2011), Cambridge Univ. Press · Zbl 1247.60001
[55] Feynman, R. P., Principles of Least Action in Quantum Mechanics (1942), Physics, Princeton University, Ph.D. dissertation
[56] Kac, M., On distributions of certain wiener functionals, Trans. Am. Math. Soc., 65, 1-13 (1949) · Zbl 0032.03501
[57] Kac, M., On some connections between probability theory and differential and integral equations, Berkeley Symposium on Math. Stat. Prob. (1951) · Zbl 0045.07002
[58] Friedman, A., Stochastic Differential Equations and Applications (1975), Academic Press · Zbl 0323.60056
[59] Forster, D., Hydrodynamic Fluctuations, Broken Symmetry, And Correlation Functions (2018), CRC Press
[60] Boon, J. P.; Yip, S., Molecular Hydrodynamics (1980), McGraw-Hill
[61] Toda, M.; Kubo, R.; Saito, N.; Hashitsume, N., Statistical Physics II: Nonequilibrium Statistical Mechanics (2012), Springer
[62] Lux, I.; Koblinger, L., Monte Carlo Particle Transport Methods: Neutron and Photon Calculations (1991), CRC Press
[63] Bear, J.; Cheng, A., Modeling Groundwater Flow and Contaminant Transport (2010), Springer · Zbl 1195.76002
[64] Volkov, V. T.; Nefedov, N. N., Asymptotic solution of coefficient inverse problems for burgers-type equations, Comput. Phys. Math. Phys., 60, 950-959 (2020) · Zbl 1450.35293
[65] Lukyanenko, D. V.; Borzunov, A. A.; Shishlenin, M. A., Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front, Commun. Nonlinear Sci. Numer. Simul., 99, 105824 (2021) · Zbl 1471.65123
[66] Lukyanenko, D. V.; Shishlenin, M. A.; Volkov, V. K., Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data, Commun. Nonlinear Sci. Numer. Simul., 54, 233-247 (2018) · Zbl 1524.65480
[67] Mamonov, A. V.; Tsai, Y. H.R., Point source identification in nonlinear advection-diffusion-reaction systems, Inverse Probl., 29, 035009 (2013) · Zbl 1264.35282
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.