×

Magnus integrators for linear and quasilinear delay differential equations. (English) Zbl 07733950

Summary: A procedure to numerically integrate non-autonomous linear delay differential equations is presented. It is based on the use of a spectral discretization of the delayed part to transform the original problem into a matrix linear ordinary differential equation which is subsequently solved with numerical integrators obtained from the Magnus expansion. The algorithm can be used in the periodic case to get both accurate approximations of the characteristic multipliers and the solution itself. In addition, it can be extended to deal with certain quasilinear delay equations.

MSC:

65Lxx Numerical methods for ordinary differential equations
34Kxx Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
34Axx General theory for ordinary differential equations

Software:

Matlab

References:

[1] Breda, D.; Maset, S.; Vermiglio, R., Stability of Linear Delay Differential Equations. A Numerical Approach with MATLAB (2015), Springer · Zbl 1315.65059
[2] Insperger, T.; Stépán, G., Semi-Discretization for Time-Delay Systems (2011), Springer · Zbl 1245.93004
[3] Csomós, P., Magnus-type integrator for semilinear delay equations with an application to epidemic models, J. Comput. Appl. Math., 363, 92-105 (2020) · Zbl 1416.65177
[4] Hutchinson, G. E., Circular causal systems in ecology, Ann. New York Acad. Sci., 50, 221-246 (1948)
[5] Bellen, A.; Zennaro, M., Numerical Methods for Delay Differential Equations (2003), Oxford University Press · Zbl 0749.65042
[6] Bellen, A.; Maset, S., Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems, Numer. Math., 84, 351-374 (2000) · Zbl 0949.65072
[7] Maset, S., Asymptotic stability in the numerical solution of linear pure delay differential equations as abstract Cauchy problems, J. Comput. Appl. Math., 111, 163-172 (1999) · Zbl 0941.65075
[8] Butcher, E.; Bobrenkov, O., On the Chebyshev spectral continuous time approximation for constant and periodic delay differential equations, Commun. Nonlinear Sci. Numer. Simul., 16, 1541-1554 (2011) · Zbl 1221.65158
[9] Sun, J.-Q., A method of continuous time approximation of delayed dynamical systems, Commun. Nonlinear Sci. Numer. Simul., 14, 998-1007 (2009) · Zbl 1221.65182
[10] Breda, D.; Diekmann, O.; Gyllenberg, M.; Scarabel, F.; Vermiglio, R., Pseudospectral discretization of nonlinear delay equations: new prospects for numerical bifurcation analysis, SIAM J. Appl. Dyn. Syst., 15, 1-23 (2016) · Zbl 1352.34101
[11] Breda, D.; Maset, S.; Vermiglio, R., Approximation of eigenvalues of evolution operators for linear retarded functional differential equations, SIAM J. Numer. Anal., 50, 1456-1483 (2012) · Zbl 1252.34089
[12] Borgioli, F.; Hajdu, D.; Insperger, T.; Stepan, G.; Michiels, W., Pseudospectral method for assessing stability robustness for linear time-periodic delayed dynamical systems, Internat. J. Numer. Methods Engrg., 121, 3505-3528 (2020) · Zbl 07863291
[13] Breda, D.; Liessi, D.; Vermiglio, R., Piecewise discretization of monodromy operators of delay equations on adapted meshes, J. Comput. Dyn., 9, 103-121 (2022) · Zbl 1492.65183
[14] Engelborghs, K.; Luzyanina, T.; Hout, K. I.T.; Roose, D., Collocation methods for the computation of periodic solutions of delay differential equations, SIAM J. Sci. Comput., 22, 1593-1609 (2000) · Zbl 0981.65082
[15] Hale, J.; Lunel, S. V., Introduction To Functional Differential Equations (1993), Springer · Zbl 0787.34002
[16] Engel, K.-J.; Nagel, R., One-Parameter Semigroups for Linear Evolution Equations (2000), Springer · Zbl 0952.47036
[17] Trefethen, L., Spectral Methods in MATLAB (2000), SIAM · Zbl 0953.68643
[18] Chicone, C.; Latushkin, Y., Evolution Semigroups in Dynamical Systems and Differential Equations (1999), American Mathematical Society · Zbl 0970.47027
[19] Nickel, G., Evolution semigroups for nonautonomous cauchy problems, Abstr. Appl. Anal., 2, 73-95 (1997) · Zbl 0938.47030
[20] Csomós, P.; Kunszenti-Kovács, D., A second-order Magnus-type integrator for evolution equations with delay, IMA J. Numer. Anal. (2022)
[21] Iserles, A.; Munthe-Kaas, H.; Nørsett, S.; Zanna, A., Lie-group methods, Acta Numer., 9, 215-365 (2000) · Zbl 1064.65147
[22] Blanes, S.; Casas, F.; Oteo, J.; Ros, J., The Magnus expansion and some of its applications, Phys. Rep., 470, 151-238 (2009)
[23] Arnal, A.; Casas, F.; Chiralt, C., A general formula for the magnus expansion in terms of iterated integrals of right-nested commutators, J. Phys. Commun., 2, Article 035024 pp. (2018)
[24] Blanes, S.; Casas, F.; Ros, J., Improved high order integrators based on the Magnus expansion, BIT, 40, 434-450 (2000) · Zbl 0962.65102
[25] Bader, P.; Blanes, S.; Casas, F., Computing the matrix exponential with an optimized Taylor polynomial approximation, Mathematics, 7, 1174 (2019)
[26] Bader, P.; Blanes, S.; Casas, F.; Seydaoğlu, M., An efficient algorithm to compute the exponential of skew-Hermitian matrices for the time integration of the Schrödinger equation, Math. Com. Simul., 194, 383-400 (2022) · Zbl 1540.65132
[27] González, C.; Ostermann, A.; Thalhammer, M., A second-order magnus-type integrator for nonautonomous parabolic problems, J. Comput. Appl. Math., 189, 142-156 (2006) · Zbl 1089.65043
[28] Hochbruck, M.; Lubich, C., On magnus integrators for time-dependent Schrödinger equations, SIAM J. Numer. Anal., 41, 945-963 (2004) · Zbl 1049.65064
[29] Blanes, S.; Casas, F.; Ros, J., High order optimized geometric integrators for linear differential equations, BIT, 42, 262-284 (2002) · Zbl 1008.65045
[30] Yanchuk, S.; Ruschel, S.; Sieber, J.; Wolfrum, M., Temporal dissipative solitons in time-delay feedback systems, Phys. Rev. Lett., 123, Article 053901 pp. (2019)
[31] Insperger, T.; Stépán, G., Stability chart for the delayed Mathieu equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 458, 1989-1998 (2002) · Zbl 1056.34073
[32] Casas, F.; Iserles, A., Explicit magnus expansions for nonlinear equations, J. Phys. A: Math. Gen., 39, 5445-5461 (2006) · Zbl 1095.65060
[33] Hajiketabi, M.; Casas, F., Numerical integrators based on the Magnus expansion for nonlinear dynamical systems, Appl. Math. Comput., 369, Article 124844 pp. (2020) · Zbl 1433.65032
[34] Hairer, E.; Nørsett, S.; Wanner, G., Solving Ordinary Differential Equations I. Nonstiff Problems (1993), Springer · Zbl 0789.65048
[35] Blanes, S.; Iserles, A.; Macnamara, S., Positivity-preserving methods for ordinary differential equations, ESAIM Math. Model. Numer. Anal., 56, 6, 1843-1870 (2022) · Zbl 1508.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.